BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35819776)

  • 1. Single-Molecule Optical Tweezers Study of Protein-Membrane Interactions.
    Ma L; Ge J; Bian X; Zhang Y
    Methods Mol Biol; 2022; 2473():367-383. PubMed ID: 35819776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule force spectroscopy of protein-membrane interactions.
    Ma L; Cai Y; Li Y; Jiao J; Wu Z; O'Shaughnessy B; De Camilli P; Karatekin E; Zhang Y
    Elife; 2017 Oct; 6():. PubMed ID: 29083305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of protein-protein interactions at the single-molecule level using optical tweezers.
    Sánchez WN; Robeson L; Carrasco V; Figueroa NL; Burgos-Bravo F; Wilson CAM; Casanova-Morales N
    Q Rev Biophys; 2022 Aug; 55():e8. PubMed ID: 35946323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepwise membrane binding of extended synaptotagmins revealed by optical tweezers.
    Ge J; Bian X; Ma L; Cai Y; Li Y; Yang J; Karatekin E; De Camilli P; Zhang Y
    Nat Chem Biol; 2022 Mar; 18(3):313-320. PubMed ID: 34916620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule manipulation of macromolecules on GUV or SUV membranes using optical tweezers.
    Wang Y; Kumar A; Jin H; Zhang Y
    Biophys J; 2021 Dec; 120(24):5454-5465. PubMed ID: 34813728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers.
    Jiao J; Rebane AA; Ma L; Zhang Y
    Methods Mol Biol; 2017; 1486():357-390. PubMed ID: 27844436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile Microfluidics Platform for Nanomanipulation and Mechanical Characterization.
    Dols-Perez A; Marin V; Amador GJ; Kieffer R; Tam D; Aubin-Tam ME
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33620-33627. PubMed ID: 31448892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free free-solution nanoaperture optical tweezers for single molecule protein studies.
    Al Balushi AA; Kotnala A; Wheaton S; Gelfand RM; Rajashekara Y; Gordon R
    Analyst; 2015 Jul; 140(14):4760-78. PubMed ID: 25734189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions.
    van Mameren J; Wuite GJL; Heller I
    Methods Mol Biol; 2018; 1665():3-23. PubMed ID: 28940061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the stability and interdomain interactions in the ABC transporter OpuA using single-molecule optical tweezers.
    van der Sleen L; Stevens JA; Marrink SJ; Poolman B; Tych K
    Cell Rep; 2024 Apr; 43(4):114110. PubMed ID: 38607912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic fluctuations lead to broad range of transduced forces in tethered-bead single-molecule experiments.
    Mehraeen S; Spakowitz AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021902. PubMed ID: 23005780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction to Optical Tweezers: Background, System Designs, and Applications.
    Malinowska AM; van Mameren J; Peterman EJG; Wuite GJL; Heller I
    Methods Mol Biol; 2024; 2694():3-28. PubMed ID: 37823997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of synaptotagmin with lipid bilayers, analyzed by single-molecule force spectroscopy.
    Takahashi H; Shahin V; Henderson RM; Takeyasu K; Edwardson JM
    Biophys J; 2010 Oct; 99(8):2550-8. PubMed ID: 20959096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid bilayer-integrated optoelectronic tweezers for nanoparticle manipulations.
    Ota S; Wang S; Wang Y; Yin X; Zhang X
    Nano Lett; 2013 Jun; 13(6):2766-70. PubMed ID: 23659726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic tweezers: development and use in single-molecule research.
    Gaire S; Fabian R; Pegg I; Sarkar A
    Biotechniques; 2022 Feb; 72(2):65-72. PubMed ID: 35037472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning a DNA molecule for bound proteins using hybrid magnetic and optical tweezers.
    van Loenhout MT; De Vlaminck I; Flebus B; den Blanken JF; Zweifel LP; Hooning KM; Kerssemakers JW; Dekker C
    PLoS One; 2013; 8(6):e65329. PubMed ID: 23755219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring intermolecular rupture forces with a combined TIRF-optical trap microscope and DNA curtains.
    Lee JY; Wang F; Fazio T; Wind S; Greene EC
    Biochem Biophys Res Commun; 2012 Oct; 426(4):565-70. PubMed ID: 22967893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule force spectroscopy using the NanoTracker optical tweezers platform: from design to application.
    Wozniak A; van Mameren J; Ragona S
    Curr Pharm Biotechnol; 2009 Aug; 10(5):467-73. PubMed ID: 19689314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interrogating biology with force: single molecule high-resolution measurements with optical tweezers.
    Capitanio M; Pavone FS
    Biophys J; 2013 Sep; 105(6):1293-303. PubMed ID: 24047980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretching short sequences of DNA with constant force axial optical tweezers.
    Raghunathan K; Milstein JN; Meiners JC
    J Vis Exp; 2011 Oct; (56):e3405. PubMed ID: 22025209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.