These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35819776)

  • 21. Single molecule studies of DNA binding proteins using optical tweezers.
    Kimura Y; Bianco PR
    Analyst; 2006 Aug; 131(8):868-74. PubMed ID: 17028717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Looking at Biomolecular Interactions through the Lens of Correlated Fluorescence Microscopy and Optical Tweezers.
    Haghizadeh A; Iftikhar M; Dandpat SS; Simpson T
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transverse Magnetic Tweezers Allowing Coincident Epifluorescence Microscopy on Horizontally Extended DNA.
    Cross SJ; Brown CE; Baumann CG
    Methods Mol Biol; 2016; 1431():73-90. PubMed ID: 27283303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA molecular handles for single-molecule protein-folding studies by optical tweezers.
    Cecconi C; Shank EA; Marqusee S; Bustamante C
    Methods Mol Biol; 2011; 749():255-71. PubMed ID: 21674378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using Force Spectroscopy to Probe Coiled-Coil Assembly and Membrane Fusion.
    Witt H; Janshoff A
    Methods Mol Biol; 2019; 1860():145-159. PubMed ID: 30317502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Molecule Optical Tweezers Study of Regulated SNARE Assembly.
    Ma L; Jiao J; Zhang Y
    Methods Mol Biol; 2019; 1860():95-114. PubMed ID: 30317500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Forces of Change: Optical Tweezers in Membrane Remodeling Studies.
    Cheppali SK; Dharan R; Sorkin R
    J Membr Biol; 2022 Dec; 255(6):677-690. PubMed ID: 35616705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new method for the covalent attachment of DNA to a surface for single-molecule studies.
    Schlingman DJ; Mack AH; Mochrie SG; Regan L
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):91-5. PubMed ID: 21130613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrodynamic slip on DNA observed by optical tweezers-controlled translocation experiments with solid-state and lipid-coated nanopores.
    Galla L; Meyer AJ; Spiering A; Sischka A; Mayer M; Hall AR; Reimann P; Anselmetti D
    Nano Lett; 2014 Jul; 14(7):4176-82. PubMed ID: 24935198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining optical tweezers and scanning probe microscopy to study DNA-protein interactions.
    Huisstede JH; Subramaniam V; Bennink ML
    Microsc Res Tech; 2007 Jan; 70(1):26-33. PubMed ID: 17080431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A polypeptide-DNA hybrid with selective linking capability applied to single molecule nano-mechanical measurements using optical tweezers.
    Moayed F; Mashaghi A; Tans SJ
    PLoS One; 2013; 8(1):e54440. PubMed ID: 23336001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics?
    Sigüenza J; Mendez S; Nicoud F
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1645-1657. PubMed ID: 28470421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parallelized DNA tethered bead measurements to scrutinize DNA mechanical structure.
    Allemand JF; Tardin C; Salomé L
    Methods; 2019 Oct; 169():46-56. PubMed ID: 31351926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism.
    Bai J; Earles CA; Lewis JL; Chapman ER
    J Biol Chem; 2000 Aug; 275(33):25427-35. PubMed ID: 10840045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards biological applications of nanophotonic tweezers.
    Badman RP; Ye F; Wang MD
    Curr Opin Chem Biol; 2019 Dec; 53():158-166. PubMed ID: 31678712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-Molecule Investigations of G-Quadruplex.
    Mandal S; Hoque ME; Mao H
    Methods Mol Biol; 2019; 2035():275-298. PubMed ID: 31444756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visco-elastic membrane tethers extracted from Escherichia coli by optical tweezers.
    Jauffred L; Callisen TH; Oddershede LB
    Biophys J; 2007 Dec; 93(11):4068-75. PubMed ID: 17704145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cutting-Edge Single-Molecule Technologies Unveil New Mechanics in Cellular Biochemistry.
    Banerjee S; Chakraborty S; Sreepada A; Banerji D; Goyal S; Khurana Y; Haldar S
    Annu Rev Biophys; 2021 May; 50():419-445. PubMed ID: 33646813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers.
    Dai J; Sheetz MP
    Biophys J; 1995 Mar; 68(3):988-96. PubMed ID: 7756561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.