These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35819776)

  • 41. Highly parallel magnetic tweezers by targeted DNA tethering.
    De Vlaminck I; Henighan T; van Loenhout MT; Pfeiffer I; Huijts J; Kerssemakers JW; Katan AJ; van Langen-Suurling A; van der Drift E; Wyman C; Dekker C
    Nano Lett; 2011 Dec; 11(12):5489-93. PubMed ID: 22017420
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High Spatiotemporal-Resolution Magnetic Tweezers: Calibration and Applications for DNA Dynamics.
    Dulin D; Cui TJ; Cnossen J; Docter MW; Lipfert J; Dekker NH
    Biophys J; 2015 Nov; 109(10):2113-25. PubMed ID: 26588570
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computational Tool for Ensemble Averaging of Single-Molecule Data.
    Blackwell T; Stump WT; Clippinger SR; Greenberg MJ
    Biophys J; 2021 Jan; 120(1):10-20. PubMed ID: 33248132
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-Force Application by a Nanoscale DNA Force Spectrometer.
    Darcy M; Crocker K; Wang Y; Le JV; Mohammadiroozbahani G; Abdelhamid MAS; Craggs TD; Castro CE; Bundschuh R; Poirier MG
    ACS Nano; 2022 Apr; 16(4):5682-5695. PubMed ID: 35385658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stretching submicron biomolecules with constant-force axial optical tweezers.
    Chen YF; Blab GA; Meiners JC
    Biophys J; 2009 Jun; 96(11):4701-8. PubMed ID: 19486692
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combining optical tweezers and patch clamp for studies of cell membrane electromechanics.
    Qian F; Ermilov S; Murdock D; Brownell WE; Anvari B
    Rev Sci Instrum; 2004 Sep; 75(9):2937-2942. PubMed ID: 21412445
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers.
    Kemmerich FE; Swoboda M; Kauert DJ; Grieb MS; Hahn S; Schwarz FW; Seidel R; Schlierf M
    Nano Lett; 2016 Jan; 16(1):381-6. PubMed ID: 26632021
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers.
    Cecconi C; Shank EA; Dahlquist FW; Marqusee S; Bustamante C
    Eur Biophys J; 2008 Jul; 37(6):729-38. PubMed ID: 18183383
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tethering Complex Proteins and Protein Complexes for Optical Tweezers Experiments.
    Maciuba K; Kaiser CM
    Methods Mol Biol; 2022; 2478():427-460. PubMed ID: 36063330
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Membrane fusion studied by colloidal probes.
    Witt H; Savić F; Verbeek S; Dietz J; Tarantola G; Oelkers M; Geil B; Janshoff A
    Eur Biophys J; 2021 Mar; 50(2):223-237. PubMed ID: 33599795
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro single-molecule manipulation studies of viral DNA replication.
    Bocanegra R; Plaza G A I; Ibarra B
    Enzymes; 2021; 49():115-148. PubMed ID: 34696830
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical Tweezers.
    Rebane AA; Ma L; Zhang Y
    Biophys J; 2016 Jan; 110(2):441-454. PubMed ID: 26789767
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Force-fluorescence spectroscopy at the single-molecule level.
    Zhou R; Schlierf M; Ha T
    Methods Enzymol; 2010; 475():405-26. PubMed ID: 20627166
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrating Optical Tweezers, DNA Tightropes, and Single-Molecule Fluorescence Imaging: Pitfalls and Traps.
    Wang J; Barnett JT; Pollard MR; Kad NM
    Methods Enzymol; 2017; 582():171-192. PubMed ID: 28062034
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Axial Optical Traps: A New Direction for Optical Tweezers.
    Yehoshua S; Pollari R; Milstein JN
    Biophys J; 2015 Jun; 108(12):2759-66. PubMed ID: 26083913
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lateral diffusion of proteins on supported lipid bilayers: additive friction of synaptotagmin 7 C2A-C2B tandem domains.
    Vasquez JK; Chantranuvatana K; Giardina DT; Coffman MD; Knight JD
    Biochemistry; 2014 Dec; 53(50):7904-13. PubMed ID: 25437758
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy.
    Sirinakis G; Ren Y; Gao Y; Xi Z; Zhang Y
    Rev Sci Instrum; 2012 Sep; 83(9):093708. PubMed ID: 23020384
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of (1) bound lipids and (2) protein domains penetrating into the bilayer hydrocarbon core.
    Ziemba BP; Falke JJ
    Chem Phys Lipids; 2013; 172-173():67-77. PubMed ID: 23701821
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA nanostructures interacting with lipid bilayer membranes.
    Langecker M; Arnaut V; List J; Simmel FC
    Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.