These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35819868)
1. Facile Synthesis of Ag/Carbon Quantum Dots/Graphene Composites for Highly Conductive Water-Based Inks. Gao C; Yu W; Du M; Zhu B; Wu W; Liang Y; Wu D; Wang B; Wang M; Zhang J ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35819868 [TBL] [Abstract][Full Text] [Related]
2. Effect of Carbon Dots Concentration on Electrical and Optical Properties of Their Composites with a Conducting Polymer. Nenashev GV; Istomina MS; Kryukov RS; Kondratev VM; Shcherbakov IP; Petrov VN; Moshnikov VA; Aleshin AN Molecules; 2022 Nov; 27(22):. PubMed ID: 36432101 [TBL] [Abstract][Full Text] [Related]
3. Ag-graphene hybrid conductive ink for writing electronics. Xu LY; Yang GY; Jing HY; Wei J; Han YD Nanotechnology; 2014 Feb; 25(5):055201. PubMed ID: 24406681 [TBL] [Abstract][Full Text] [Related]
4. Preparation of high-quality graphene oxide-carbon quantum dots composites and their application for electrochemical sensing of uric acid and ascorbic acid. Ding L; He H; Zhou J; Wang D; Nian Q; Li S; Qian S; Li W; Liu C; Liang Z Nanotechnology; 2021 Mar; 32(13):135501. PubMed ID: 33285528 [TBL] [Abstract][Full Text] [Related]
5. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures. Liu P; Ma J; Deng S; Zeng K; Deng D; Xie W; Lu A Nanotechnology; 2016 Sep; 27(38):385603. PubMed ID: 27518607 [TBL] [Abstract][Full Text] [Related]
6. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution. Ding J; Liu J; Tian Q; Wu Z; Yao W; Dai Z; Liu L; Wu W Nanoscale Res Lett; 2016 Dec; 11(1):412. PubMed ID: 27644238 [TBL] [Abstract][Full Text] [Related]
7. All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications. Karim N; Afroj S; Tan S; Novoselov KS; Yeates SG Sci Rep; 2019 May; 9(1):8035. PubMed ID: 31142768 [TBL] [Abstract][Full Text] [Related]
8. Interface Modified Flexible Printed Conductive Films via Ag Meng Y; Ma T; Pavinatto FJ; MacKenzie JD ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404 [TBL] [Abstract][Full Text] [Related]
9. Highly conductive graphene/carbon black screen printing inks for flexible electronics. Liu L; Shen Z; Zhang X; Ma H J Colloid Interface Sci; 2021 Jan; 582(Pt A):12-21. PubMed ID: 32814220 [TBL] [Abstract][Full Text] [Related]
10. Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics. He P; Cao J; Ding H; Liu C; Neilson J; Li Z; Kinloch IA; Derby B ACS Appl Mater Interfaces; 2019 Sep; 11(35):32225-32234. PubMed ID: 31390171 [TBL] [Abstract][Full Text] [Related]
11. Conductivity enhancement of Ag nanowire ink by decorating Feng J; Xing B; Xu J Nanotechnology; 2024 Feb; 35(17):. PubMed ID: 38262038 [TBL] [Abstract][Full Text] [Related]
12. Use of Nanocellulose to Produce Water-Based Conductive Inks with Ag NPs for Printed Electronics. Martinez-Crespiera S; Pepió-Tàrrega B; González-Gil RM; Cecilia-Morillo F; Palmer J; Escobar AM; Beneitez-Álvarez S; Abitbol T; Fall A; Aulin C; Nevo Y; Beni V; Tolin E; Bahr A Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328367 [TBL] [Abstract][Full Text] [Related]
13. Application of Ag@Cu Water-Based Nanomaterial Conductive Ink in 3D Printing. Zhao C; Wang J; Zhang Z; Qian B 3D Print Addit Manuf; 2023 Jun; 10(3):552-558. PubMed ID: 37346186 [TBL] [Abstract][Full Text] [Related]
14. Facile Preparation of Monodisperse Cu@Ag Core-Shell Nanoparticles for Conductive Ink in Printing Electronics. Li G; Yu X; Zhang R; Ouyang Q; Sun R; Cao L; Zhu P Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512629 [TBL] [Abstract][Full Text] [Related]
15. Porous Fe Yun X; Li J; Chen X; Chen H; Xiao L; Xiang K; Chen W; Liao H; Zhu Y ACS Appl Mater Interfaces; 2019 Oct; 11(40):36970-36984. PubMed ID: 31487152 [TBL] [Abstract][Full Text] [Related]
17. Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of Ag/CQDs composite for Hg Liu T; Dong JX; Liu SG; Li N; Lin SM; Fan YZ; Lei JL; Luo HQ; Li NB J Hazard Mater; 2017 Jan; 322(Pt B):430-436. PubMed ID: 27773437 [TBL] [Abstract][Full Text] [Related]
18. A Novel Carbon Quantum Dots Signal Amplification Strategy Coupled with Sandwich Electrochemiluminescence Immunosensor for the Detection of CA15-3 in Human Serum. Qin D; Jiang X; Mo G; Feng J; Yu C; Deng B ACS Sens; 2019 Feb; 4(2):504-512. PubMed ID: 30693767 [TBL] [Abstract][Full Text] [Related]
19. Conductive Inks Based on Melamine Intercalated Graphene Nanosheets for Inkjet Printed Flexible Electronics. Kralj M; Krivačić S; Ivanišević I; Zubak M; Supina A; Marciuš M; Halasz I; Kassal P Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079974 [TBL] [Abstract][Full Text] [Related]
20. Enhancing Light Absorption and Prolonging Charge Separation in Carbon Quantum Dots Murali G; Modigunta JKR; Park S; Lee S; Lee H; Yeon J; Kim H; Park YH; Park SY; Durrant JR; Cha H; An TK; In I ACS Appl Mater Interfaces; 2021 Jul; 13(29):34648-34657. PubMed ID: 34279075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]