These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35820154)

  • 1. Fabrication and in vitro characterization of luffa-based composite scaffolds incorporated with gelatin, hydroxyapatite and psyllium husk for bone tissue engineering.
    Gundu S; Sahi AK; Varshney N; Varghese J; K Vishwakarma N; Mahto SK
    J Biomater Sci Polym Ed; 2022 Dec; 33(17):2220-2248. PubMed ID: 35820154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and Cytocompatibility Evaluation of Psyllium Husk (Isabgol)/Gelatin Composite Scaffolds.
    Poddar S; Agarwal PS; Sahi AK; Vajanthri KY; Pallawi ; Singh KN; Mahto SK
    Appl Biochem Biotechnol; 2019 Jul; 188(3):750-768. PubMed ID: 30680704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds.
    Kim HW; Knowles JC; Kim HE
    J Biomed Mater Res A; 2005 Feb; 72(2):136-45. PubMed ID: 15549783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering.
    Kim H; Hwangbo H; Koo Y; Kim G
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of graphene oxide and nano-bioglass based scaffold for bone tissue regeneration.
    Kumari S; Singh D; Srivastava P; Singh BN; Mishra A
    Biomed Mater; 2022 Sep; 17(6):. PubMed ID: 36113451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications.
    Isikli C; Hasirci V; Hasirci N
    J Tissue Eng Regen Med; 2012 Feb; 6(2):135-43. PubMed ID: 21351375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair.
    Mahmood SK; Zakaria MZAB; Razak ISBA; Yusof LM; Jaji AZ; Tijani I; Hammadi NI
    Biochem Biophys Rep; 2017 Jul; 10():237-251. PubMed ID: 28955752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility.
    Kemençe N; Bölgen N
    J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering.
    Azami M; Samadikuchaksaraei A; Poursamar SA
    Int J Artif Organs; 2010 Feb; 33(2):86-95. PubMed ID: 20306435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering.
    Kakkar P; Verma S; Manjubala I; Madhan B
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():343-7. PubMed ID: 25491838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of PHEMA-gelatin scaffold enriched with graphene oxide for bone tissue engineering.
    Tabatabaee S; Baheiraei N; Salehnia M
    J Orthop Surg Res; 2022 Apr; 17(1):216. PubMed ID: 35397609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering.
    Khan MN; Islam JM; Khan MA
    J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro evaluation of biodegradable nHAP-Chitosan-Gelatin-based scaffold for tissue engineering application.
    Thariga S; Subashini R; Pavithra S; Meenachi P; Kumar P; Balashanmugam P; Senthil Kumar P
    IET Nanobiotechnol; 2019 May; 13(3):301-306. PubMed ID: 31053693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of gelatin-strontium substituted calcium phosphate scaffolds with unidirectional pores for bone tissue engineering.
    Wu YC; Lin WY; Yang CY; Lee TM
    J Mater Sci Mater Med; 2015 Mar; 26(3):152. PubMed ID: 25773230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biomimetic nanohydroxyapatite/gelatin composite material preparation and in vitro study].
    Li S; Hu X
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2014 Sep; 39(9):949-58. PubMed ID: 25269494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering.
    Thomas A; Bera J
    J Biomater Sci Polym Ed; 2019 May; 30(7):561-579. PubMed ID: 30801229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering.
    Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.