BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35820472)

  • 1. Origins, genomic structure and copy number variation of snake venom myotoxins.
    Gopalan SS; Perry BW; Schield DR; Smith CF; Mackessy SP; Castoe TA
    Toxicon; 2022 Sep; 216():92-106. PubMed ID: 35820472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab®.
    Saviola AJ; Pla D; Sanz L; Castoe TA; Calvete JJ; Mackessy SP
    J Proteomics; 2015 May; 121():28-43. PubMed ID: 25819372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation, characterization and crystallization of a phospholipase A2 myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis).
    Ownby CL; Colberg TR; White SP
    Toxicon; 1997 Jan; 35(1):111-24. PubMed ID: 9028014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Rokyta DR; Lemmon AR; Margres MJ; Aronow K
    BMC Genomics; 2012 Jul; 13():312. PubMed ID: 23025625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics.
    Rokyta DR; Wray KP; Margres MJ
    BMC Genomics; 2013 Jun; 14():394. PubMed ID: 23758969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snakes on a plain: biotic and abiotic factors determine venom compositional variation in a wide-ranging generalist rattlesnake.
    Smith CF; Nikolakis ZL; Ivey K; Perry BW; Schield DR; Balchan NR; Parker J; Hansen KC; Saviola AJ; Castoe TA; Mackessy SP
    BMC Biol; 2023 Jun; 21(1):136. PubMed ID: 37280596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management.
    Boldrini-França J; Corrêa-Netto C; Silva MM; Rodrigues RS; De La Torre P; Pérez A; Soares AM; Zingali RB; Nogueira RA; Rodrigues VM; Sanz L; Calvete JJ
    J Proteomics; 2010 Aug; 73(9):1758-76. PubMed ID: 20542151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new small myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis).
    Griffin PR; Aird SD
    FEBS Lett; 1990 Nov; 274(1-2):43-7. PubMed ID: 2253781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct regulatory networks control toxin gene expression in elapid and viperid snakes.
    Modahl CM; Han SX; van Thiel J; Vaz C; Dunstan NL; Frietze S; Jackson TNW; Mackessy SP; Kini RM
    BMC Genomics; 2024 Feb; 25(1):186. PubMed ID: 38365592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nucleotide sequence of the translated and untranslated regions of a cDNA for myotoxin a from the venom of prairie rattlesnake (Crotalus viridis viridis).
    Norris JW; Fry RM; Tu AT
    Biochem Biophys Res Commun; 1997 Jan; 230(3):607-10. PubMed ID: 9015371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America.
    Calvete JJ; Sanz L; Cid P; de la Torre P; Flores-Díaz M; Dos Santos MC; Borges A; Bremo A; Angulo Y; Lomonte B; Alape-Girón A; Gutiérrez JM
    J Proteome Res; 2010 Jan; 9(1):528-44. PubMed ID: 19863078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea).
    Pahari S; Mackessy SP; Kini RM
    BMC Mol Biol; 2007 Dec; 8():115. PubMed ID: 18096037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic Variation in Mojave Rattlesnake (Crotalus scutulatus) Venom Is Driven by Four Toxin Families.
    Strickland JL; Mason AJ; Rokyta DR; Parkinson CL
    Toxins (Basel); 2018 Mar; 10(4):. PubMed ID: 29570631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple myotoxin sequences from the venom of a single prairie rattlesnake (Crotalus viridis viridis).
    Aird SD; Kruggel WG; Kaiser II
    Toxicon; 1991; 29(2):265-8. PubMed ID: 2048143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogenetic Change in the Venom of Mexican Black-Tailed Rattlesnakes (
    Borja M; Neri-Castro E; Pérez-Morales R; Strickland JL; Ponce-López R; Parkinson CL; Espinosa-Fematt J; Sáenz-Mata J; Flores-Martínez E; Alagón A; Castañeda-Gaytán G
    Toxins (Basel); 2018 Dec; 10(12):. PubMed ID: 30513722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid sequence of a myotoxin from venom of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Samejima Y; Aoki Y; Mebs D
    Toxicon; 1991; 29(4-5):461-8. PubMed ID: 1862521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of antibodies to myotoxin a and prairie rattlesnake (Crotalus viridis viridis) venom in three antisera using enzyme-linked immunosorbent assay and immunodiffusion.
    Ownby CL; Odell GV; Theakston RD
    Toxicon; 1983; 21(6):849-55. PubMed ID: 6419394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications.
    Sunagar K; Undheim EA; Scheib H; Gren EC; Cochran C; Person CE; Koludarov I; Kelln W; Hayes WK; King GF; Antunes A; Fry BG
    J Proteomics; 2014 Mar; 99():68-83. PubMed ID: 24463169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes.
    Schield DR; Card DC; Hales NR; Perry BW; Pasquesi GM; Blackmon H; Adams RH; Corbin AB; Smith CF; Ramesh B; Demuth JP; Betrán E; Tollis M; Meik JM; Mackessy SP; Castoe TA
    Genome Res; 2019 Apr; 29(4):590-601. PubMed ID: 30898880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid sequences of myotoxins from Crotalus viridis concolor venom.
    Bieber AL; McParland RH; Becker RR
    Toxicon; 1987; 25(6):677-80. PubMed ID: 3629618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.