BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35820472)

  • 41. The Deep Origin and Recent Loss of Venom Toxin Genes in Rattlesnakes.
    Dowell NL; Giorgianni MW; Kassner VA; Selegue JE; Sanchez EE; Carroll SB
    Curr Biol; 2016 Sep; 26(18):2434-2445. PubMed ID: 27641771
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel broad spectrum venom metalloproteinase autoinhibitor in the rattlesnake
    Ukken FP; Dowell NL; Hajra M; Carroll SB
    Proc Natl Acad Sci U S A; 2022 Dec; 119(51):e2214880119. PubMed ID: 36508672
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rock squirrel (Spermophilus variegatus) blood sera affects proteolytic and hemolytic activities of rattlesnake venoms.
    Biardi JE; Coss RG
    Toxicon; 2011 Feb; 57(2):323-31. PubMed ID: 21184770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection of myotoxin alpha-like proteins in various snake venoms.
    Bober MA; Glenn JL; Straight RC; Ownby CL
    Toxicon; 1988; 26(7):665-73. PubMed ID: 3140426
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tracking the recruitment and evolution of snake toxins using the evolutionary context provided by the
    Almeida DD; Viala VL; Nachtigall PG; Broe M; Gibbs HL; Serrano SMT; Moura-da-Silva AM; Ho PL; Nishiyama-Jr MY; Junqueira-de-Azevedo ILM
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972420
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of the two myotoxin a isomers from the prairie rattlesnake (Crotalus viridis viridis) by capillary zone electrophoresis and fluorescence quenching studies.
    Nedelkov D; Bieber AL
    Toxicon; 1997 May; 35(5):689-98. PubMed ID: 9203293
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrated "omics" profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus.
    Durban J; Pérez A; Sanz L; Gómez A; Bonilla F; Rodríguez S; Chacón D; Sasa M; Angulo Y; Gutiérrez JM; Calvete JJ
    BMC Genomics; 2013 Apr; 14():234. PubMed ID: 23575160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Snake venom gene expression is coordinated by novel regulatory architecture and the integration of multiple co-opted vertebrate pathways.
    Perry BW; Gopalan SS; Pasquesi GIM; Schield DR; Westfall AK; Smith CF; Koludarov I; Chippindale PT; Pellegrino MW; Chuong EB; Mackessy SP; Castoe TA
    Genome Res; 2022 Jun; 32(6):1058-1073. PubMed ID: 35649579
    [TBL] [Abstract][Full Text] [Related]  

  • 49. When one phenotype is not enough: divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species.
    Zancolli G; Calvete JJ; Cardwell MD; Greene HW; Hayes WK; Hegarty MJ; Herrmann HW; Holycross AT; Lannutti DI; Mulley JF; Sanz L; Travis ZD; Whorley JR; Wüster CE; Wüster W
    Proc Biol Sci; 2019 Mar; 286(1898):20182735. PubMed ID: 30862287
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vivo test of the ability of antiserum to myotoxin a from prairie rattlesnake (Crotalus viridis viridis) venom to neutralize local myonecrosis induced by myotoxin a and homologous crude venom.
    Ownby CL; Colberg TR; Claypool PL; Odell GV
    Toxicon; 1984; 22(1):99-105. PubMed ID: 6719480
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A proposed 3D structure for crotamine based on homology building, molecular simulations and circular dichroism.
    Siqueira AM; Martins NF; De Lima ME; Diniz CR; Cartier A; Brown D; Maigret B
    J Mol Graph Model; 2002 Mar; 20(5):389-98. PubMed ID: 11887801
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Tiger Rattlesnake genome reveals a complex genotype underlying a simple venom phenotype.
    Margres MJ; Rautsaw RM; Strickland JL; Mason AJ; Schramer TD; Hofmann EP; Stiers E; Ellsworth SA; Nystrom GS; Hogan MP; Bartlett DA; Colston TJ; Gilbert DM; Rokyta DR; Parkinson CL
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33468678
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Margres MJ; McGivern JJ; Wray KP; Seavy M; Calvin K; Rokyta DR
    J Proteomics; 2014 Jan; 96():145-58. PubMed ID: 24231107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integrated Venomics and Venom Gland Transcriptome Analysis of Juvenile and Adult Mexican Rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus Revealed miRNA-modulated Ontogenetic Shifts.
    Durban J; Sanz L; Trevisan-Silva D; Neri-Castro E; Alagón A; Calvete JJ
    J Proteome Res; 2017 Sep; 16(9):3370-3390. PubMed ID: 28731347
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The best of both worlds? Rattlesnake hybrid zones generate complex combinations of divergent venom phenotypes that retain high toxicity.
    Smith CF; Nikolakis ZL; Perry BW; Schield DR; Meik JM; Saviola AJ; Castoe TA; Parker J; Mackessy SP
    Biochimie; 2023 Oct; 213():176-189. PubMed ID: 37451532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona.
    Massey DJ; Calvete JJ; Sánchez EE; Sanz L; Richards K; Curtis R; Boesen K
    J Proteomics; 2012 May; 75(9):2576-87. PubMed ID: 22446891
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phenotypic integration in the feeding system of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Margres MJ; Wray KP; Seavy M; McGivern JJ; Sanader D; Rokyta DR
    Mol Ecol; 2015 Jul; 24(13):3405-20. PubMed ID: 25988233
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic genetic differentiation drives the widespread structural and functional convergent evolution of snake venom proteinaceous toxins.
    Xie B; Dashevsky D; Rokyta D; Ghezellou P; Fathinia B; Shi Q; Richardson MK; Fry BG
    BMC Biol; 2022 Jan; 20(1):4. PubMed ID: 34996434
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Snake venomics of Crotalus tigris: the minimalist toxin arsenal of the deadliest Nearctic rattlesnake venom. Evolutionary Clues for generating a pan-specific antivenom against crotalid type II venoms [corrected].
    Calvete JJ; Pérez A; Lomonte B; Sánchez EE; Sanz L
    J Proteome Res; 2012 Feb; 11(2):1382-90. PubMed ID: 22181673
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational Studies of Snake Venom Toxins.
    Ojeda PG; Ramírez D; Alzate-Morales J; Caballero J; Kaas Q; González W
    Toxins (Basel); 2017 Dec; 10(1):. PubMed ID: 29271884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.