These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Characterization of irrigator emitter to be used as solid set canopy delivery system: which is best for which role in the vineyard? Mozzanini E; Grella M; Marucco P; Balsari P; Gioelli F Pest Manag Sci; 2023 Feb; 79(2):584-597. PubMed ID: 36214795 [TBL] [Abstract][Full Text] [Related]
43. The effect of the air blast sprayer speed on the chemical distribution in vineyard. Celen IH; Arin S; Durgut MR Pak J Biol Sci; 2008 Jun; 11(11):1472-6. PubMed ID: 18817249 [TBL] [Abstract][Full Text] [Related]
44. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management. Hunter JE; Gannon TW; Richardson RJ; Yelverton FH; Leon RG Pest Manag Sci; 2020 Apr; 76(4):1386-1392. PubMed ID: 31622004 [TBL] [Abstract][Full Text] [Related]
45. Stereoscopic plant-protection system integrating UAVs and autonomous ground sprayers for orchards. Jiang S; Chen B; Li W; Yang S; Zheng Y; Liu X Front Plant Sci; 2022; 13():1040808. PubMed ID: 36388533 [TBL] [Abstract][Full Text] [Related]
46. Effect of aerial application of adjuvants on pepper defoliant droplet deposition and efficacy of defoliation sprayed by unmanned aerial vehicles. Liu Y; Xiao Q; Han X; Zeeshan M; Fang Z; Dou Z Front Plant Sci; 2022; 13():917462. PubMed ID: 36160975 [TBL] [Abstract][Full Text] [Related]
47. Assessing the application of spot spray in Nanguo pear orchards: Effect of nozzle type, spray volume rate and adjuvant. Guo S; Yao W; Xu T; Ma H; Sun M; Chen C; Lan Y Pest Manag Sci; 2022 Aug; 78(8):3564-3575. PubMed ID: 35598076 [TBL] [Abstract][Full Text] [Related]
48. Biological control technology and application based on agricultural unmanned aerial vehicle (UAV) intelligent delivery of insect natural enemies (Trichogramma) carrier. Zhan Y; Chen S; Wang G; Fu J; Lan Y Pest Manag Sci; 2021 Jul; 77(7):3259-3272. PubMed ID: 33759315 [TBL] [Abstract][Full Text] [Related]
49. CFD-based pesticide selection for a nozzle used in a six-rotor UAV in hover mode for tea spraying. Dong SJ; Gui QH; Zhu L; Zou XR; Zhou WX; Hou RY; Moray PJ; Yin CL Pest Manag Sci; 2023 May; 79(5):1963-1976. PubMed ID: 36680499 [TBL] [Abstract][Full Text] [Related]
50. Field evaluation of a six-rotor unmanned agricultural aerial sprayer: effects of application parameters on spray deposition and control efficacy against rice planthopper. Huang Z; Wang C; Wongsuk S; Qi P; Liu L; Qiao B; Zhong L; He X Pest Manag Sci; 2023 Nov; 79(11):4664-4678. PubMed ID: 37448099 [TBL] [Abstract][Full Text] [Related]
51. Optimization of Operational Parameters of Plant Protection UAV. Xing W; Cui Y; Wang X; Shen J Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204829 [TBL] [Abstract][Full Text] [Related]
52. Application of a centrifugal disc fertilizer spreading system for UAVs in rice fields. Zhou H; Yao W; Su D; Guo S; Zheng Z; Yu Z; Gao D; Li H; Chen C Heliyon; 2024 Apr; 10(8):e29837. PubMed ID: 38681536 [TBL] [Abstract][Full Text] [Related]
53. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting. Wang B; Zhang Y; Wang C; Teng G Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236524 [TBL] [Abstract][Full Text] [Related]
54. Assessing the optimal liquid volume to be sprayed on isolated olive trees according to their canopy volumes. Miranda-Fuentes A; Llorens J; Rodríguez-Lizana A; Cuenca A; Gil E; Blanco-Roldán GL; Gil-Ribes JA Sci Total Environ; 2016 Oct; 568():296-305. PubMed ID: 27300563 [TBL] [Abstract][Full Text] [Related]
55. Assessment of Vineyard Canopy Characteristics from Vigour Maps Obtained Using UAV and Satellite Imagery. Campos J; García-Ruíz F; Gil E Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805351 [TBL] [Abstract][Full Text] [Related]
56. Using tank-mix adjuvant improves the physicochemical properties and dosage delivery to reduce the use of pesticides in unmanned aerial vehicles for plant protection in wheat. Zhao R; Yu M; Sun Z; Li LJ; Shang HY; Xi WJ; Li B; Li YY; Xu Y; Wu XM Pest Manag Sci; 2022 Jun; 78(6):2512-2522. PubMed ID: 35318795 [TBL] [Abstract][Full Text] [Related]
57. Distribution characteristics on droplet deposition of wind field vortex formed by multi-rotor UAV. Guo S; Li J; Yao W; Zhan Y; Li Y; Shi Y PLoS One; 2019; 14(7):e0220024. PubMed ID: 31329644 [TBL] [Abstract][Full Text] [Related]
58. Reducing environmental exposure to PPPs in super-high density olive orchards using UAV sprayers. Sánchez-Fernández L; Barrera-Báez M; Martínez-Guanter J; Pérez-Ruiz M Front Plant Sci; 2023; 14():1272372. PubMed ID: 38239222 [TBL] [Abstract][Full Text] [Related]
59. Effects of tank-mix adjuvants on physicochemical properties and dosage delivery at low dilution ratios for unmanned aerial vehicle application in paddy fields. Zhao R; Sun Z; Bird N; Gu YC; Xu Y; Zhang ZH; Wu XM Pest Manag Sci; 2022 Apr; 78(4):1582-1593. PubMed ID: 34984795 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of the droplet deposition and control effect of a special adjuvant for unmanned aerial vehicle (UAV) sprayers. Wang X; Zhang Y; Hu H; Liu B; Wang F; Zhang Y; Wang W; Li X; Xu W J Pestic Sci; 2023 Aug; 48(3):78-85. PubMed ID: 37745170 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]