These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Development of a Recognition System for Spraying Areas from Unmanned Aerial Vehicles Using a Machine Learning Approach. Gao P; Zhang Y; Zhang L; Noguchi R; Ahamed T Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30646586 [TBL] [Abstract][Full Text] [Related]
63. Season Long Pest Management Efficacy and Spray Characteristics of a Solid Set Canopy Delivery System in High Density Apples. Owen-Smith P; Wise J; Grieshop MJ Insects; 2019 Jun; 10(7):. PubMed ID: 31261916 [TBL] [Abstract][Full Text] [Related]
64. Effect of Tractor Speed and Spray Application Volume on Spray Coverage at Different Heights in the Canopy of Tall Pecan Trees. Bock CH; Hotchkiss MW Plant Dis; 2021 Sep; 105(9):2509-2520. PubMed ID: 33461320 [TBL] [Abstract][Full Text] [Related]
65. A Framework for Agricultural Pest and Disease Monitoring Based on Internet-of-Things and Unmanned Aerial Vehicles. Gao D; Sun Q; Hu B; Zhang S Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182732 [TBL] [Abstract][Full Text] [Related]
66. Spray performance of flexible shield canopy opener and rotor wind integrated boom-sprayer application in soybean: effects on droplet deposition distribution. Yu S; Cui L; Cui H; Liu X; Liu J; Xin Z; Yuan J; Wang D Pest Manag Sci; 2024 Jul; 80(7):3334-3348. PubMed ID: 38380840 [TBL] [Abstract][Full Text] [Related]
67. Data-driven vermiculite distribution modelling for UAV-based precision pest management. Ma N; Mantri A; Bough G; Patnaik A; Yadav S; Nansen C; Kong Z Front Robot AI; 2022; 9():854381. PubMed ID: 36035868 [TBL] [Abstract][Full Text] [Related]
68. Relative efficiencies of experimental and conventional foliar sprayers and assessment of optimal LWA spray volumes in trellised wine grapes. Gil E; Salcedo R; Soler A; Ortega P; Llop J; Campos J; Oliva J Pest Manag Sci; 2021 May; 77(5):2462-2476. PubMed ID: 33442942 [TBL] [Abstract][Full Text] [Related]
69. Pneumatic spray delivery-based fixed spray system configuration optimization for efficient agrochemical application in modern vineyards. Bhalekar DG; Sahni RK; Schrader MJ; Khot LR Pest Manag Sci; 2024 Aug; 80(8):4044-4054. PubMed ID: 38563464 [TBL] [Abstract][Full Text] [Related]
70. Toward a new method to classify the airblast sprayers according to their potential drift reduction: comparison of direct and new indirect measurement methods. Grella M; Marucco P; Balsari P Pest Manag Sci; 2019 Aug; 75(8):2219-2235. PubMed ID: 30680860 [TBL] [Abstract][Full Text] [Related]
71. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
72. Design of inductive electrostatic boom spray system based on embedded closed electrode structure and droplet distribution test in soybean field. Liu C; Hu J; Cao R; Li Y; Zhao S; Li Q; Zhang W Front Plant Sci; 2024; 15():1367781. PubMed ID: 38952844 [TBL] [Abstract][Full Text] [Related]
73. Wetting and deposition characteristics of air-assisted spray droplet on large broad-leaved crop canopy. Jiang Y; Yang Z; Xu X; Shen D; Jiang T; Xie B; Duan J Front Plant Sci; 2023; 14():1079703. PubMed ID: 36743480 [TBL] [Abstract][Full Text] [Related]
74. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Lu N; Zhou J; Han Z; Li D; Cao Q; Yao X; Tian Y; Zhu Y; Cao W; Cheng T Plant Methods; 2019; 15():17. PubMed ID: 30828356 [TBL] [Abstract][Full Text] [Related]
75. COMPARATIVE HYGIENIC ASSESSMENT OF THE POTENTIAL DIQUAT HAZARD TO THE POPULATION WHEN CONSUMING AGRICULTURAL CROPS TREATED WITH THE REGLONE AIR 200 SL FORMULATION USING DIFFERENT APPLICATION TECHNOLOGIES (UAV, AERIAL, HIGH-CLEARANCE ROD SPRAYER TREATMENT). Borysenko AA; Antonenko АM; Aleksiichuk V; Kondratiuk M; Pelo I Wiad Lek; 2023; 76(6):1478-1484. PubMed ID: 37463385 [TBL] [Abstract][Full Text] [Related]
76. Determination of spray drift and buffer zones in 3D crops using the ISO standard and new LiDAR methodologies. Torrent X; Gregorio E; Rosell-Polo JR; Arnó J; Peris M; van de Zande JC; Planas S Sci Total Environ; 2020 Apr; 714():136666. PubMed ID: 31986387 [TBL] [Abstract][Full Text] [Related]
77. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes. Braekman P; Foque D; Messens W; Van Labeke MC; Pieters JG; Nuyttens D Pest Manag Sci; 2010 Feb; 66(2):203-12. PubMed ID: 19834882 [TBL] [Abstract][Full Text] [Related]
78. Water-soluble food dye of Allura Red as a tracer to determine the spray deposition of pesticide on target crops. Gao S; Wang G; Zhou Y; Wang M; Yang D; Yuan H; Yan X Pest Manag Sci; 2019 Oct; 75(10):2592-2597. PubMed ID: 30927304 [TBL] [Abstract][Full Text] [Related]
79. Model and design of real-time control system for aerial variable spray. Liu Y; Ru Y; Duan L; Qu R PLoS One; 2020; 15(7):e0235700. PubMed ID: 32701965 [TBL] [Abstract][Full Text] [Related]
80. Optimizing Caneberry Spray Coverage for Drosophila suzukii (Diptera: Drosophilidae) Management on Diversified Fruit Farms. Lewis MT; Hamby KA J Econ Entomol; 2020 Dec; 113(6):2820-2831. PubMed ID: 33128449 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]