BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35820559)

  • 1. Sulfur heterogeneity: A non-negligible factor in manipulating growth and lipid accumulation of Scenedesmus obliquus at a relatively high ratio of carbon to nitrogen.
    Liu X; Zhang J; Lin Y; Wei L; Cheng H; Wang M
    Bioresour Technol; 2022 Sep; 360():127599. PubMed ID: 35820559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sulfate ions on growth and lipid synthesis of Scenedesmus obliquus in synthetic wastewater with various carbon-to-nitrogen ratios altered by different ammonium and nitrate additions.
    Liu X; Wei L; Zhang J; Zhu K; Zhang H; Hua G; Cheng H
    Bioresour Technol; 2021 Dec; 341():125766. PubMed ID: 34416659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Sulfur Starvation on Growth Rates, Biomass and Lipid Contents in the Green Microalga
    Morowvat MH; Ghasemi Y
    Recent Pat Biotechnol; 2020; 14(2):145-153. PubMed ID: 31916524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of ofloxacin with biofuel production by oleaginous microalgae Scenedesmus obliquus.
    Yang L; Ren L; Tan X; Chu H; Chen J; Zhang Y; Zhou X
    Bioresour Technol; 2020 Nov; 315():123738. PubMed ID: 32659423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical optimization for simultaneous removal of methyl red and production of fatty acid methyl esters using fresh alga Scenedesmus obliquus.
    El-Naggar NE; Hamouda RA; Abou-El-Souod GW
    Sci Rep; 2022 May; 12(1):7156. PubMed ID: 35504903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous bioremediation of Disperse orange-2RL Azo dye and fatty acids production by Scenedesmus obliquus cultured under mixotrophic and heterotrophic conditions.
    Hamouda RA; El-Naggar NE; Abou-El-Souod GW
    Sci Rep; 2022 Dec; 12(1):20768. PubMed ID: 36456621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation.
    Ji MK; Yun HS; Park S; Lee H; Park YT; Bae S; Ham J; Choi J
    Bioresour Technol; 2015 Mar; 179():624-628. PubMed ID: 25553643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production.
    El-Sheekh M; Abomohra Ael-F; Hanelt D
    World J Microbiol Biotechnol; 2013 May; 29(5):915-22. PubMed ID: 23269508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pilot-scale study on the removal of binary mixture (ciprofloxacin and norfloxacin) by Scenedesmus obliquus: Optimization, biotransformation, and biofuel profile.
    Ricky R; Shanthakumar S
    J Environ Manage; 2023 Oct; 344():118388. PubMed ID: 37354597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater.
    Han SF; Jin W; Tu R; Abomohra Ael-F; Wang ZH
    Bioprocess Biosyst Eng; 2016 Jul; 39(7):1073-9. PubMed ID: 26969589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing the role of phosphorus supply on the phosphorus distribution and lipid production in Scenedesmus obliquus UTEX 393 during nitrogen starvation.
    Guo L; Wu Q; Lai YS; Eustance E; Rittmann BE
    Sci Total Environ; 2023 Feb; 858(Pt 1):159811. PubMed ID: 36349625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of monoculture and mixed culture (Scenedesmus obliquus and wild algae) for C, N, and P removal and lipid production.
    Qu Z; Duan P; Cao X; Liu M; Lin L; Li M
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20961-20968. PubMed ID: 31115809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of different concentrations of CO
    Zhang X; Wei X; Hu X; Yang Y; Chen X; Tian J; Pan T; Ding B
    Chemosphere; 2022 Oct; 305():135514. PubMed ID: 35798159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High fatty acid productivity from Scenedesmus obliquus in heterotrophic cultivation with glucose and soybean processing wastewater via nitrogen and phosphorus regulation.
    Shen XF; Gao LJ; Zhou SB; Huang JL; Wu CZ; Qin QW; Zeng RJ
    Sci Total Environ; 2020 Mar; 708():134596. PubMed ID: 31780158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of flue gas CO
    Ji MK; Yun HS; Hwang JH; Salama ES; Jeon BH; Choi J
    Environ Technol; 2017 Aug; 38(16):2085-2092. PubMed ID: 27796154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing biomass productivity and CO2 biofixation of microalga, Scenedesmus sp. by using sodium hydroxide.
    Nayak M; Rath SS; Thirunavoukkarasu M; Panda PK; Mishra BK; Mohanty RC
    J Microbiol Biotechnol; 2013 Sep; 23(9):1260-8. PubMed ID: 23727795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities.
    Mandotra SK; Kumar P; Suseela MR; Nayaka S; Ramteke PW
    Bioresour Technol; 2016 Feb; 201():222-9. PubMed ID: 26675046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of total lipid yield by nitrogen, carbon, and iron supplementation in isolated microalgae.
    Sivaramakrishnan R; Incharoensakdi A
    J Phycol; 2017 Aug; 53(4):855-868. PubMed ID: 28523645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production.
    Shen QH; Jiang JW; Chen LP; Cheng LH; Xu XH; Chen HL
    Bioresour Technol; 2015 Aug; 190():257-63. PubMed ID: 25958150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea.
    González-Garcinuño Á; Tabernero A; Sánchez-Álvarez JM; Martin Del Valle EM; Galán MA
    Bioresour Technol; 2014 Dec; 173():334-341. PubMed ID: 25310870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.