These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35820824)

  • 1. α-Gal antigen-deficient rabbits with GGTA1 gene disruption via CRISPR/Cas9.
    Wei L; Mu Y; Deng J; Wu Y; Qiao Y; Zhang K; Wang X; Huang W; Shao A; Chen L; Zhang Y; Li Z; Lai L; Qu S; Xu L
    BMC Genom Data; 2022 Jul; 23(1):54. PubMed ID: 35820824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient generation of GGTA1-deficient pigs by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes.
    Tanihara F; Hirata M; Nguyen NT; Sawamoto O; Kikuchi T; Doi M; Otoi T
    BMC Biotechnol; 2020 Aug; 20(1):40. PubMed ID: 32811500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts.
    Sato M; Miyoshi K; Nagao Y; Nishi Y; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Xenotransplantation; 2014; 21(3):291-300. PubMed ID: 24919525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silencing the porcine iGb3s gene does not affect Galα3Gal levels or measures of anticipated pig-to-human and pig-to-primate acute rejection.
    Butler JR; Skill NJ; Priestman DL; Platt FM; Li P; Estrada JL; Martens GR; Ladowski JM; Tector M; Tector AJ
    Xenotransplantation; 2016 Mar; 23(2):106-16. PubMed ID: 27106872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GGTA1/iGb3S Double Knockout Mice: Immunological Properties and Immunogenicity Response to Xenogeneic Bone Matrix.
    Shao A; Ling Y; Chen L; Wei L; Fan C; Lei D; Xu L; Wang C
    Biomed Res Int; 2020; 2020():9680474. PubMed ID: 32596401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Step Generation of Multiple Gene-Edited Pigs by Electroporation of the CRISPR/Cas9 System into Zygotes to Reduce Xenoantigen Biosynthesis.
    Tanihara F; Hirata M; Nguyen NT; Sawamoto O; Kikuchi T; Otoi T
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes.
    Petersen B; Frenzel A; Lucas-Hahn A; Herrmann D; Hassel P; Klein S; Ziegler M; Hadeler KG; Niemann H
    Xenotransplantation; 2016 Sep; 23(5):338-46. PubMed ID: 27610605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of α-1,3-Galactosyltransferase-Deficient Porcine Embryonic Fibroblasts by CRISPR/Cas9-Mediated Knock-in of a Small Mutated Sequence and a Targeted Toxin-Based Selection System.
    Sato M; Kagoshima A; Saitoh I; Inada E; Miyoshi K; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Reprod Domest Anim; 2015 Oct; 50(5):872-80. PubMed ID: 26138589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2.
    Fischer K; Rieblinger B; Hein R; Sfriso R; Zuber J; Fischer A; Klinger B; Liang W; Flisikowski K; Kurome M; Zakhartchenko V; Kessler B; Wolf E; Rieben R; Schwinzer R; Kind A; Schnieke A
    Xenotransplantation; 2020 Jan; 27(1):e12560. PubMed ID: 31591751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system.
    Matson AW; Hosny N; Swanson ZA; Hering BJ; Burlak C
    PLoS One; 2019; 14(12):e0226107. PubMed ID: 31821359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Generation of Somatic Cell Nuclear Transfer-Competent Porcine Cells with Mutated Alleles at Multiple Target Loci by Using CRISPR/Cas9 Combined with Targeted Toxin-Based Selection System.
    Sato M; Miyoshi K; Nakamura S; Ohtsuka M; Sakurai T; Watanabe S; Kawaguchi H; Tanimoto A
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29207527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes.
    Estrada JL; Martens G; Li P; Adams A; Newell KA; Ford ML; Butler JR; Sidner R; Tector M; Tector J
    Xenotransplantation; 2015; 22(3):194-202. PubMed ID: 25728481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xenogeneic bone matrix immune risk assessment using GGTA1 knockout mice.
    Shao A; Ling Y; Xu L; Liu S; Fan C; Wang Z; Xu B; Wang C
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S359-S369. PubMed ID: 30207744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gal epitope expression and immunological properties in iGb3S deficient mice.
    Shao A; Xu L; Wu X; Liu S; Lu Y; Fan C
    Sci Rep; 2018 Oct; 8(1):15433. PubMed ID: 30337628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A desirable transgenic strategy using GGTA1 endogenous promoter-mediated knock-in for xenotransplantation model.
    Ko N; Shim J; Kim HJ; Lee Y; Park JK; Kwak K; Lee JW; Jin DI; Kim H; Choi K
    Sci Rep; 2022 Jun; 12(1):9611. PubMed ID: 35688851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH.
    Zhang R; Wang Y; Chen L; Wang R; Li C; Li X; Fang B; Ren X; Ruan M; Liu J; Xiong Q; Zhang L; Jin Y; Zhang M; Liu X; Li L; Chen Q; Pan D; Li R; Cooper DKC; Yang H; Dai Y
    Acta Biomater; 2018 May; 72():196-205. PubMed ID: 29631050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Efficacious Transgenic Strategy for Triple Knockout of Xeno-Reactive Antigen Genes GGTA1, CMAH, and B4GALNT2 from Jeju Native Pigs.
    Yoon S; Lee S; Park C; Choi H; Yoo M; Lee SC; Hyun CH; Kim N; Kang T; Son E; Ghosh M; Son YO; Hur CG
    Vaccines (Basel); 2022 Sep; 10(9):. PubMed ID: 36146581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery.
    Konakci KZ; Bohle B; Blumer R; Hoetzenecker W; Roth G; Moser B; Boltz-Nitulescu G; Gorlitzer M; Klepetko W; Wolner E; Ankersmit HJ
    Eur J Clin Invest; 2005 Jan; 35(1):17-23. PubMed ID: 15638815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection.
    Li P; Estrada JL; Burlak C; Montgomery J; Butler JR; Santos RM; Wang ZY; Paris LL; Blankenship RL; Downey SM; Tector M; Tector AJ
    Xenotransplantation; 2015; 22(1):20-31. PubMed ID: 25178170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timing of CRISPR/Cas9-related mRNA microinjection after activation as an important factor affecting genome editing efficiency in porcine oocytes.
    Sato M; Kosuke M; Koriyama M; Inada E; Saitoh I; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S; Miyoshi K
    Theriogenology; 2018 Mar; 108():29-38. PubMed ID: 29195121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.