These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 35821114)

  • 1. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis.
    Xu X; Yu X; Hu G; Wang K; Zhang J; Li X
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35821114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics.
    Lakkis J; Wang D; Zhang Y; Hu G; Wang K; Pan H; Ungar L; Reilly MP; Li X; Li M
    Genome Res; 2021 Oct; 31(10):1753-1766. PubMed ID: 34035047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CDSImpute: An ensemble similarity imputation method for single-cell RNA sequence dropouts.
    Azim R; Wang S; Dipu SA
    Comput Biol Med; 2022 Jul; 146():105658. PubMed ID: 35751187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data.
    Shi Y; Wan J; Zhang X; Yin Y
    Comput Biol Med; 2023 Sep; 164():107263. PubMed ID: 37531858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate and interpretable gene expression imputation on scRNA-seq data using IGSimpute.
    Xu K; Cheong C; Veldsman WP; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37039664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SinCWIm: An imputation method for single-cell RNA sequence dropouts using weighted alternating least squares.
    Gong L; Cui X; Liu Y; Lin C; Gao Z
    Comput Biol Med; 2024 Mar; 171():108225. PubMed ID: 38442556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scIGANs: single-cell RNA-seq imputation using generative adversarial networks.
    Xu Y; Zhang Z; You L; Liu J; Fan Z; Zhou X
    Nucleic Acids Res; 2020 Sep; 48(15):e85. PubMed ID: 32588900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AutoImpute: Autoencoder based imputation of single-cell RNA-seq data.
    Talwar D; Mongia A; Sengupta D; Majumdar A
    Sci Rep; 2018 Nov; 8(1):16329. PubMed ID: 30397240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AGImpute: imputation of scRNA-seq data based on a hybrid GAN with dropouts identification.
    Zhu X; Meng S; Li G; Wang J; Peng X
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data.
    Qi J; Zhou Y; Zhao Z; Jin S
    PLoS Comput Biol; 2021 Jun; 17(6):e1009118. PubMed ID: 34138847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data.
    Chen S; Yan X; Zheng R; Li M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36567258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating imputation methods for single-cell RNA-seq data.
    Cheng Y; Ma X; Yuan L; Sun Z; Wang P
    BMC Bioinformatics; 2023 Jul; 24(1):302. PubMed ID: 37507764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation Imputation for Single-Cell RNA-seq.
    Gan L; Vinci G; Allen GI
    J Comput Biol; 2022 May; 29(5):465-482. PubMed ID: 35325552
    [No Abstract]   [Full Text] [Related]  

  • 17. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell RNA sequencing data imputation using bi-level feature propagation.
    Lee J; Yun S; Kim Y; Chen T; Kellis M; Park C
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38706317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scINRB: single-cell gene expression imputation with network regularization and bulk RNA-seq data.
    Kang Y; Zhang H; Guan J
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38600665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scIMC: a platform for benchmarking comparison and visualization analysis of scRNA-seq data imputation methods.
    Dai C; Jiang Y; Yin C; Su R; Zeng X; Zou Q; Nakai K; Wei L
    Nucleic Acids Res; 2022 May; 50(9):4877-4899. PubMed ID: 35524568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.