BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 35821178)

  • 1. Role of Chemokines in the Development and Progression of Alzheimer's Disease.
    Wojcieszak J; Kuczyńska K; Zawilska JB
    J Mol Neurosci; 2022 Sep; 72(9):1929-1951. PubMed ID: 35821178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of CX3CR1 and Fractalkine Chemokines in Amyloid Beta Clearance and p-Tau Accumulation in Alzheimer's Disease (AD) Rodent Models: Is Fractalkine a Systemic Biomarker for AD?
    Merino JJ; Muñetón-Gómez V; Alvárez MI; Toledano-Díaz A
    Curr Alzheimer Res; 2016; 13(4):403-12. PubMed ID: 26567742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Alzheimer disease: cellular and molecular aspects].
    Octave JN
    Bull Mem Acad R Med Belg; 2005; 160(10-12):445-9; discussion 450-1. PubMed ID: 16768248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models.
    Sebastian Monasor L; Müller SA; Colombo AV; Tanrioever G; König J; Roth S; Liesz A; Berghofer A; Piechotta A; Prestel M; Saito T; Saido TC; Herms J; Willem M; Haass C; Lichtenthaler SF; Tahirovic S
    Elife; 2020 Jun; 9():. PubMed ID: 32510331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease.
    Al-Ghraiybah NF; Wang J; Alkhalifa AE; Roberts AB; Raj R; Yang E; Kaddoumi A
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer's transgenic mice.
    Liu B; Rasool S; Yang Z; Glabe CG; Schreiber SS; Ge J; Tan Z
    Am J Pathol; 2009 Nov; 175(5):2099-110. PubMed ID: 19834067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles.
    Ghosh P; Singh R; Ganeshpurkar A; Pokle AV; Singh RB; Singh SK; Kumar A
    Neurochem Int; 2021 Dec; 151():105212. PubMed ID: 34656693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endocytosis and Alzheimer's disease.
    Zadka Ł; Sochocka M; Hachiya N; Chojdak-Łukasiewicz J; Dzięgiel P; Piasecki E; Leszek J
    Geroscience; 2024 Feb; 46(1):71-85. PubMed ID: 37646904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic scheme to examine the role of glial cells in the pathogenesis of Alzheimer's disease.
    Thuraisingham RA
    Metab Brain Dis; 2022 Mar; 37(3):801-805. PubMed ID: 35032278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Role of Aggregated Proteomes in the Pathogenesis of Alzheimer's Disease.
    Narayanan SE; Sekhar N; Rajamma RG; Marathakam A; Al Mamun A; Uddin MS; Mathew B
    Curr Protein Pept Sci; 2020; 21(12):1164-1173. PubMed ID: 32957903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review.
    Dinda B; Dinda M; Kulsi G; Chakraborty A; Dinda S
    Eur J Med Chem; 2019 May; 169():185-199. PubMed ID: 30877973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. APP transgenic modeling of Alzheimer's disease: mechanisms of neurodegeneration and aberrant neurogenesis.
    Crews L; Rockenstein E; Masliah E
    Brain Struct Funct; 2010 Mar; 214(2-3):111-26. PubMed ID: 20091183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer's disease.
    Takahashi RH; Nagao T; Gouras GK
    Pathol Int; 2017 Apr; 67(4):185-193. PubMed ID: 28261941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Pathological changes induced by amyloid-β in Alzheimer's disease].
    Takata K; Kitamura Y; Taniguchi T
    Yakugaku Zasshi; 2011 Jan; 131(1):3-11. PubMed ID: 21212607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-IL17 treatment ameliorates Down syndrome phenotypes in mice.
    Rueda N; Vidal V; García-Cerro S; Narcís JO; Llorens-Martín M; Corrales A; Lantigua S; Iglesias M; Merino J; Merino R; Martínez-Cué C
    Brain Behav Immun; 2018 Oct; 73():235-251. PubMed ID: 29758264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Microglia in Alzheimer's Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules.
    Althafar ZM
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Chemokines in Alzheimer's Disease.
    Jorda A; Campos-Campos J; Iradi A; Aldasoro M; Aldasoro C; Vila JM; Valles SL
    Endocr Metab Immune Disord Drug Targets; 2020; 20(9):1383-1390. PubMed ID: 32003705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease.
    Streit WJ; Braak H; Xue QS; Bechmann I
    Acta Neuropathol; 2009 Oct; 118(4):475-85. PubMed ID: 19513731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activated human microglia stimulate neuroblastoma cells to upregulate production of beta amyloid protein and tau: implications for Alzheimer's disease pathogenesis.
    Lee M; McGeer E; McGeer PL
    Neurobiol Aging; 2015 Jan; 36(1):42-52. PubMed ID: 25169677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.