These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35821321)

  • 1. Promising co-inoculation strategies to reduce arsenic toxicity in soybean.
    Vezza ME; Pramparo RDP; Wevar Oller AL; Agostini E; Talano MA
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88066-88077. PubMed ID: 35821321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress.
    Armendariz AL; Talano MA; Olmos Nicotra MF; Escudero L; Breser ML; Porporatto C; Agostini E
    Plant Physiol Biochem; 2019 May; 138():26-35. PubMed ID: 30831360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic effect on the model crop symbiosis Bradyrhizobium-soybean.
    Talano MA; Cejas RB; González PS; Agostini E
    Plant Physiol Biochem; 2013 Feb; 63():8-14. PubMed ID: 23228549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)?
    Silva ER; Zoz J; Oliveira CES; Zuffo AM; Steiner F; Zoz T; Vendruscolo EP
    Arch Microbiol; 2019 Apr; 201(3):325-335. PubMed ID: 30617456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants.
    Armendariz AL; Talano MA; Wevar Oller AL; Medina MI; Agostini E
    J Environ Sci (China); 2015 Jul; 33():203-10. PubMed ID: 26141894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symbiotic performance and induction of systemic resistance against Cercospora sojina in soybean plants co-inoculated with Bacillus sp. CHEP5 and Bradyrhizobium japonicum E109.
    Tonelli ML; Magallanes-Noguera C; Fabra A
    Arch Microbiol; 2017 Nov; 199(9):1283-1291. PubMed ID: 28643122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and molecular characterization of arsenic response from Azospirillum brasilense Cd, a bacterial strain used as plant inoculant.
    Vezza ME; Olmos Nicotra MF; Agostini E; Talano MA
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):2287-2300. PubMed ID: 31776908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting redox metabolism of the maize-Azospirillum brasilense interaction exposed to arsenic-affected groundwater.
    Peralta JM; Bianucci E; Romero-Puertas MC; Furlan A; Castro S; Travaglia C
    Physiol Plant; 2021 Nov; 173(3):1189-1206. PubMed ID: 34331344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards sustainable yield improvement: field inoculation of soybean with Bradyrhizobium and co-inoculation with Azospirillum in Mozambique.
    Chibeba AM; Kyei-Boahen S; de Fátima Guimarães M; Nogueira MA; Hungria M
    Arch Microbiol; 2020 Nov; 202(9):2579-2590. PubMed ID: 32681431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Azospirillum brasilense Az39 restricts cadmium entrance into wheat plants and mitigates cadmium stress.
    Vazquez A; Zawoznik M; Benavides MP; Groppa MD
    Plant Sci; 2021 Nov; 312():111056. PubMed ID: 34620450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inoculation with Bacillus subtilis and Azospirillum brasilense Produces Abscisic Acid That Reduces Irt1-Mediated Cadmium Uptake of Roots.
    Xu Q; Pan W; Zhang R; Lu Q; Xue W; Wu C; Song B; Du S
    J Agric Food Chem; 2018 May; 66(20):5229-5236. PubMed ID: 29738246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the Plant Growth Promoting and Arsenic Tolerance Potential of Bradyrhizobium japonicum CB1809.
    Seraj MF; Rahman T; Lawrie AC; Reichman SM
    Environ Manage; 2020 Nov; 66(5):930-939. PubMed ID: 32918111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation.
    Masciarelli O; Llanes A; Luna V
    Microbiol Res; 2014; 169(7-8):609-15. PubMed ID: 24280513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of
    Xing P; Zhao Y; Guan D; Li L; Zhao B; Ma M; Jiang X; Tian C; Cao F; Li J
    Genes (Basel); 2022 Oct; 13(11):. PubMed ID: 36360159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of plant growth-promoting rhizobacteria on co-inoculation with
    Zeffa DM; Fantin LH; Koltun A; de Oliveira ALM; Nunes MPBA; Canteri MG; Gonçalves LSA
    PeerJ; 2020; 8():e7905. PubMed ID: 31942248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression.
    El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA
    Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum.
    Atieno M; Herrmann L; Okalebo R; Lesueur D
    World J Microbiol Biotechnol; 2012 Jul; 28(7):2541-50. PubMed ID: 22806160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving soybean growth under arsenic stress by inoculation with native arsenic-resistant bacteria.
    Wevar Oller AL; Regis S; Armendariz AL; Talano MA; Agostini E
    Plant Physiol Biochem; 2020 Oct; 155():85-92. PubMed ID: 32745933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-existence of Leclercia adecarboxylata (LSE-1) and Bradyrhizobium sp. (LSBR-3) in nodule niche for multifaceted effects and profitability in soybean production.
    Kumawat KC; Sharma P; Singh I; Sirari A; Gill BS
    World J Microbiol Biotechnol; 2019 Oct; 35(11):172. PubMed ID: 31673798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quorum sensing communication: Bradyrhizobium-Azospirillum interaction via N-acyl-homoserine lactones in the promotion of soybean symbiosis.
    Dos Santos Lima Fagotti D; Abrantes JLF; Cerezini P; Fukami J; Nogueira MA; Del Cerro P; Valderrama-Fernández R; Ollero FJ; Megías M; Hungria M
    J Basic Microbiol; 2019 Jan; 59(1):38-53. PubMed ID: 30320901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.