These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35821326)

  • 41. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.
    Liu Y; Bralts VF; Engel BA
    Sci Total Environ; 2015 Apr; 511():298-308. PubMed ID: 25553544
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study of the applicability of Sponge City concepts for flood mitigation based on LID (low impact development) measures: A case study in Conakry City, Republic of Guinea.
    Bah A; Hongbo Z; Bah A; Jufang H; Zhumei L
    Water Sci Technol; 2023 Aug; 88(4):901-921. PubMed ID: 37651328
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rainwater harvesting for urban flood management - An integrated modelling framework.
    Jamali B; Bach PM; Deletic A
    Water Res; 2020 Mar; 171():115372. PubMed ID: 31865130
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Design of sponge city and its inspiration to landscape ecology: A case of Liaodong Bay area of Panjin City, Northeast China].
    Sui JL; Liu M; Li CL; Hu YM; Wu YL; Liu C
    Ying Yong Sheng Tai Xue Bao; 2017 Mar; 28(3):975-982. PubMed ID: 29741027
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing the mechanism for flood control: a case of plain river network cities under extreme rainfalls.
    Wang Y; Gao C; Xu J; Zhang W; She L; Zhang Q; Bao R
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38076-38098. PubMed ID: 36576623
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative calculation of stormwater regulation capacity and collaborative configuration of sponge facilities in urban high-density built-up areas.
    Jiang C; Li J; Gao J; Lv P; Zhang Y
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):13571-13581. PubMed ID: 36136198
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Advances in low impact development technology for urban stormwater management].
    Liu W; Chen WP; Peng C
    Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1901-12. PubMed ID: 26572048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of low impact development on the stormwater runoff and pollution control.
    Fan G; Lin R; Wei Z; Xiao Y; Shangguan H; Song Y
    Sci Total Environ; 2022 Jan; 805():150404. PubMed ID: 34818793
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling flood reduction effects of low impact development at a watershed scale.
    Ahiablame L; Shakya R
    J Environ Manage; 2016 Apr; 171():81-91. PubMed ID: 26878221
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of the effects of low-impact development practices under different rainy types: case of Fuxing Island Park, Shanghai, China.
    Wang HW; Zhai YJ; Wei YY; Mao YF
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6706-6716. PubMed ID: 30632038
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Simulation of rainfall and snowmelt runoff reduction in a northern city based on combination of green ecological strategies.].
    Han JF; Liu S; Dai J; Qiu H
    Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):643-650. PubMed ID: 29692081
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimal designs of LID based on LID experiments and SWMM for a small-scale community in Tianjin, north China.
    Yang B; Zhang T; Li J; Feng P; Miao Y
    J Environ Manage; 2023 May; 334():117442. PubMed ID: 36773451
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of the impact of low impact development on runoff from a new district in Korea.
    Lee JM; Hyun KH; Choi JS
    Water Sci Technol; 2013; 68(6):1315-21. PubMed ID: 24056429
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Uncertainties of urban flood modeling: Influence of parameters for different underlying surfaces.
    Liu J; Shao W; Xiang C; Mei C; Li Z
    Environ Res; 2020 Mar; 182():108929. PubMed ID: 31855699
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simulation and Optimization Strategy of Storm Flood Safety Pattern Based on SCS-CN Model.
    Cai X; Xu D
    Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055520
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel multi-objective optimization framework for urban green-gray infrastructure implementation under impacts of climate change.
    Gao Z; Zhang QH; Xie YD; Wang Q; Dzakpasu M; Xiong JQ; Wang XC
    Sci Total Environ; 2022 Jun; 825():153954. PubMed ID: 35189239
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Environmental and economic cost-benefit comparison of sponge city construction in different urban functional regions.
    Zhu Y; Xu C; Yin D; Xu J; Wu Y; Jia H
    J Environ Manage; 2022 Feb; 304():114230. PubMed ID: 34883437
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The optimization of Low Impact Development placement considering life cycle cost using Genetic Algorithm.
    Huang JJ; Xiao M; Li Y; Yan R; Zhang Q; Sun Y; Zhao T
    J Environ Manage; 2022 May; 309():114700. PubMed ID: 35180436
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Field monitoring of a LID-BMP treatment train system in China.
    Jia H; Wang X; Ti C; Zhai Y; Field R; Tafuri AN; Cai H; Yu SL
    Environ Monit Assess; 2015 Jun; 187(6):373. PubMed ID: 26009159
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatial allocation of LID practices with a water footprint approach.
    Chuang WK; Lin ZE; Lin TC; Lo SL; Chang CL; Chiueh PT
    Sci Total Environ; 2023 Feb; 859(Pt 2):160201. PubMed ID: 36395841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.