These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 35821402)
61. Fully Developed Opposing Mixed Convection Flow in the Inclined Channel Filled with a Hybrid Nanofluid. You X; Li S Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922900 [TBL] [Abstract][Full Text] [Related]
62. FEM simulations for double diffusive transport mechanism hybrid nano fluid flow in corrugated enclosure by installing uniformly heated and concentrated cylinder. Bilal S; Shah IA; Khan I; Al-Otaibi S; Rahimzai AA Sci Rep; 2024 Jan; 14(1):766. PubMed ID: 38191791 [TBL] [Abstract][Full Text] [Related]
63. Insight into the dynamics of second grade hybrid radiative nanofluid flow within the boundary layer subject to Lorentz force. Jawad M; Saeed A; Tassaddiq A; Khan A; Gul T; Kumam P; Shah Z Sci Rep; 2021 Mar; 11(1):4894. PubMed ID: 33649359 [TBL] [Abstract][Full Text] [Related]
64. Higher order chemical reaction effects on [Formula: see text] nanofluid flow over a vertical plate. K P; B RK Sci Rep; 2022 Oct; 12(1):17000. PubMed ID: 36220863 [TBL] [Abstract][Full Text] [Related]
65. Heat transport and entropy optimization in flow of magneto-Williamson nanomaterial with Arrhenius activation energy. Alsaadi FE; Hayat T; Khan MI; Alsaadi FE Comput Methods Programs Biomed; 2020 Jan; 183():105051. PubMed ID: 31526945 [TBL] [Abstract][Full Text] [Related]
66. Irreversibility analysis with hybrid cross nanofluid of stagnation point and radiative flow ( Lone SA; Ali F; Saeed A; Bognár G Heliyon; 2023 Apr; 9(4):e15056. PubMed ID: 37089319 [TBL] [Abstract][Full Text] [Related]
67. Investigation of physical aspects of cubic autocatalytic chemically reactive flow of second grade nanomaterial with entropy optimization. Alsaadi FE; Hayat T; Khan SA; Alsaadi FE; Khan MI Comput Methods Programs Biomed; 2020 Jan; 183():105061. PubMed ID: 31539717 [TBL] [Abstract][Full Text] [Related]
68. Study of the Magnetized Hybrid Nanofluid Flow through a Flat Elastic Surface with Applications in Solar Energy. Bhatti MM; Öztop HF; Ellahi R Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363099 [TBL] [Abstract][Full Text] [Related]
69. Numerical analysis of MHD axisymmetric rotating Bodewadt rheology under viscous dissipation and ohmic heating effects. Awais M; Bibi M; Ali A; Malik MY; Nisar KS; Jamshed W Sci Rep; 2022 Jun; 12(1):10097. PubMed ID: 35710916 [TBL] [Abstract][Full Text] [Related]
70. Impacts of the properties heterogeneity on 3D magnetic dusty nanofluids flow in porous enclosures with cylinders. Rashed ZZ Sci Rep; 2022 Jun; 12(1):9110. PubMed ID: 35650317 [TBL] [Abstract][Full Text] [Related]
71. Thermal Analysis of 3D Electromagnetic Radiative Nanofluid Flow with Suction/Blowing: Darcy-Forchheimer Scheme. Alotaibi H; Eid MR Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832806 [TBL] [Abstract][Full Text] [Related]
72. Effect of thermal radiation on convective heat transfer in MHD boundary layer Carreau fluid with chemical reaction. Shah SAGA; Hassan A; Karamti H; Alhushaybari A; Eldin SM; Galal AM Sci Rep; 2023 Mar; 13(1):4117. PubMed ID: 36914731 [TBL] [Abstract][Full Text] [Related]
73. Analytical investigation of magnetized 2D hybrid nanofluid (GO + ZnO + blood) flow through a perforated capillary. Ullah I; Ullah A; Selim MM; Khan MI; Saima ; Khan AA; Malik MY Comput Methods Biomech Biomed Engin; 2022 Oct; 25(13):1531-1543. PubMed ID: 34986079 [TBL] [Abstract][Full Text] [Related]
74. Steady thermal convection representing the ultimate scaling. Motoki S; Kawahara G; Shimizu M Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2225):20210037. PubMed ID: 35465720 [TBL] [Abstract][Full Text] [Related]
75. Multiple slip effects on time dependent axisymmetric flow of magnetized Carreau nanofluid and motile microorganisms. Faiz M; Habib D; Siddique I; Awrejcewicz J; Pawłowski W; Abdal S; Salamat N Sci Rep; 2022 Aug; 12(1):14259. PubMed ID: 35995916 [TBL] [Abstract][Full Text] [Related]
76. Effect of inclined magnetic field on radiative heat and mass transfer in chemically reactive hybrid nanofluid flow due to dual stretching. Arshad M; Alharbi FM; Hassan A; Haider Q; Alhushaybari A; Eldin SM; Ahmad Z; Al-Essa LA; Galal AM Sci Rep; 2023 May; 13(1):7828. PubMed ID: 37188712 [TBL] [Abstract][Full Text] [Related]
77. Dissipated electroosmotic EMHD hybrid nanofluid flow through the micro-channel. Bilal M; Asghar I; Ramzan M; Nisar KS; Aty AA; Yahia IS; Ghazwani HAS Sci Rep; 2022 Mar; 12(1):4771. PubMed ID: 35306508 [TBL] [Abstract][Full Text] [Related]
78. Theoretical and mathematical analysis of entropy generation in fluid flow subject to aluminum and ethylene glycol nanoparticles. Shah F; Khan MI; Hayat T; Khan MI; Alsaedi A; Khan WA Comput Methods Programs Biomed; 2019 Dec; 182():105057. PubMed ID: 31499421 [TBL] [Abstract][Full Text] [Related]
79. Entropy optimized Darcy-Forchheimer nanofluid (Silicon dioxide, Molybdenum disulfide) subject to temperature dependent viscosity. Abbas SZ; Khan WA; Kadry S; Khan MI; Waqas M; Khan MI Comput Methods Programs Biomed; 2020 Jul; 190():105363. PubMed ID: 32062091 [TBL] [Abstract][Full Text] [Related]
80. A mathematical model for entropy generation in a Powell-Eyring nanofluid flow in a porous channel. Ogunseye HA; Sibanda P Heliyon; 2019 May; 5(5):e01662. PubMed ID: 31193833 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]