BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35821593)

  • 1. Conjunctive use of synchrotron X-ray diffraction and Rietveld refinement in Fe-oxide clays for forensic applications.
    Testoni SA; Prandel LV; Melo VF; Dawson LA; da Silva Salvador FA
    J Forensic Sci; 2022 Sep; 67(5):2020-2031. PubMed ID: 35821593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray Diffraction and Rietveld Refinement in Deferrified Clays for Forensic Science.
    Prandel LV; Melo VF; Brinatti AM; Saab SDC; Salvador FAS
    J Forensic Sci; 2018 Jan; 63(1):251-257. PubMed ID: 28230900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics.
    Kirsten M; Mikutta R; Vogel C; Thompson A; Mueller CW; Kimaro DN; Bergsma HLT; Feger KH; Kalbitz K
    Sci Rep; 2021 Mar; 11(1):5076. PubMed ID: 33658688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?
    Corrêa RS; Melo VF; Abreu GGF; Sousa MH; Chaker JA; Gomes JA
    Sci Justice; 2018 Mar; 58(2):138-144. PubMed ID: 29526265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption of cosmetic and personal care polymer ingredients to iron oxides, clay minerals and soil clays: An environmental perspective.
    Nguyen DT; Nguyen MT; Le TQ; Duong LH; Nguyen AQ; Pham ATM; Dinh VM; Nguyen AD; Nguyen-Thanh L; Nguyen MN
    Sci Total Environ; 2023 Feb; 861():160606. PubMed ID: 36460116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjunctive use of quantitative and qualitative X-ray diffraction analysis of soils and rocks for forensic analysis.
    Ruffell A; Wiltshire P
    Forensic Sci Int; 2004 Oct; 145(1):13-23. PubMed ID: 15374590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pedological data for the study of soils developed over a limestone bed in a humid tropical environment.
    Ofem KI; John K; Ediene VF; Kefas PK; Ede AM; Ezeaku VI; Pawlett M
    Environ Monit Assess; 2023 May; 195(5):628. PubMed ID: 37126114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative study of the mineralogical composition of mineral dust aerosols by X-ray diffraction.
    Nowak S; Lafon S; Caquineau S; Journet E; Laurent B
    Talanta; 2018 Aug; 186():133-139. PubMed ID: 29784340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.
    Chen C; Dynes JJ; Wang J; Karunakaran C; Sparks DL
    Environ Sci Technol; 2014 Jun; 48(12):6678-86. PubMed ID: 24837340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of clay mineral weathering on green rust formation at iron-reducing conditions.
    Betts AR; Siebecker MG; Elzinga EJ; Luxton TP; Scheckel KG; Sparks DL
    Geochim Cosmochim Acta; 2023 Jun; 350():46-56. PubMed ID: 37469621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nanophase iron mineral(s) in Mars soil.
    Banin A; Ben-Shlomo T; Margulies L; Blake DF; Mancinelli RL; Gehring AU
    J Geophys Res; 1993 Nov; 98(E11):20,831-53. PubMed ID: 11539182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of adsorption sites on aggregate soil samples using synchrotron X-ray computerized microtomography.
    Altman SJ; Rivers ML; Reno MD; Cygan RT; McLain AA
    Environ Sci Technol; 2005 Apr; 39(8):2679-85. PubMed ID: 15884365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clay mineral composition of upland soils and its implication for pedogenesis and soil taxonomy in subtropical China.
    Ouyang N; Zhang Y; Sheng H; Zhou Q; Huang Y; Yu Z
    Sci Rep; 2021 May; 11(1):9707. PubMed ID: 33958650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineral-nutrient relationships in African soils assessed using cluster analysis of X-ray powder diffraction patterns and compositional methods.
    Butler BM; Palarea-Albaladejo J; Shepherd KD; Nyambura KM; Towett EK; Sila AM; Hillier S
    Geoderma; 2020 Oct; 375():114474. PubMed ID: 33012837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characteristics of humic-like acid from microbial utilization of lignin involving different mineral types.
    Wang S; Xu J; Zhang X; Wang Y; Fan J; Liu L; Wang N; Chen D
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23923-23936. PubMed ID: 31222654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Occurrence relationship between iron minerals and clay minerals in net-like red soils: evidence from X-ray diffraction].
    Yin K; Hong HL; Han W; Ma YB; Li RB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):1126-9. PubMed ID: 23841442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radium radioactivity in soil profiles following long term irrigation with high radioactivity fossil groundwater.
    Abu-Sharar TM; Al-Jundi J; Al-Abdullah T; Ata S; Khadr S
    J Environ Radioact; 2022 Oct; 251-252():106986. PubMed ID: 36027820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals.
    Wang X; Li Y
    J Hazard Mater; 2011 May; 189(3):719-23. PubMed ID: 21466918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.
    Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf.
    Hein JR; Dowling JS; Schuetze A; Lee HJ
    Mar Environ Res; 2003; 56(1-2):79-102. PubMed ID: 12648951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.