These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35822323)

  • 1. First-principles prediction on antimony-doping effects on the cyclic stability of tin anodes for lithium-ion batteries.
    Yu J; Yang TH; Hao W; Lee M; Hwang GS
    Phys Chem Chem Phys; 2022 Jul; 24(29):17542-17546. PubMed ID: 35822323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving the Origins of Superior Cycling Performance of Antimony Anode in Sodium-ion Batteries: A Comparison with Lithium-ion Batteries.
    Shao R; Sun Z; Wang L; Pan J; Yi L; Zhang Y; Han J; Yao Z; Li J; Wen Z; Chen S; Chou SL; Peng DL; Zhang Q
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202320183. PubMed ID: 38265307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effects of Trace Sb and Zn Additions on Cu
    Tan XF; Yong AXB; Gu Q; Yang W; Aso K; Matsumura S; McDonald SD; Nogita K
    J Nanosci Nanotechnol; 2020 Aug; 20(8):5182-5191. PubMed ID: 32126719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries.
    Ji L; Zhou W; Chabot V; Yu A; Xiao X
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24895-901. PubMed ID: 26496231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NiM (Sb, Sn)/N-doped hollow carbon tube as high-rate and high-capacity anode for lithium-ion batteries.
    Weng C; Huang S; Lu T; Li J; Li J; Li J; Pan L
    J Colloid Interface Sci; 2023 Dec; 652(Pt A):208-217. PubMed ID: 37595438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of Sn Anode through Structural Reconstruction of a Cu-Sn Intermetallic Coating Layer.
    Wang G; Aubin M; Mehta A; Tian H; Chang J; Kushima A; Sohn Y; Yang Y
    Adv Mater; 2020 Oct; 32(42):e2003684. PubMed ID: 32844484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dealloying-lithiation/delithiation-realloying mechanism of a breithauptite (NiSb) nanocrystal embedded nanofabric anode for flexible Li-ion batteries.
    Chen R; Xue X; Lu J; Chen T; Hu Y; Ma L; Zhu G; Jin Z
    Nanoscale; 2019 May; 11(18):8803-8811. PubMed ID: 30998229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium/Boron Co-doped Micrometer SiO
    Li XD; Zhao YM; Tian YF; Lu ZY; Fan M; Zhang XS; Tian H; Xu Q; Li HL; Guo YG
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27854-27860. PubMed ID: 35678306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the performance of silicon monoxide anodes
    Xie W; Pang C; He P; Xiao C; Koyama M; Wang J; Qi X; Ren J; He X
    Phys Chem Chem Phys; 2022 Mar; 24(12):7405-7414. PubMed ID: 35266492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Si-Based High-Entropy Anode for Lithium-Ion Batteries.
    Lei X; Wang Y; Wang J; Su Y; Ji P; Liu X; Guo S; Wang X; Hu Q; Gu L; Zhang Y; Yang R; Zhou G; Su D
    Small Methods; 2024 Jan; 8(1):e2300754. PubMed ID: 37821416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sb Nanoparticles Embedded in the N-Doped Carbon Fibers as Binder-Free Anode for Flexible Li-Ion Batteries.
    Wang X; Jia N; Li J; Liu P; Zhao X; Lin Y; Sun C; Qin W
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase evolution of tin nanocrystals in lithium ion batteries.
    Im HS; Cho YJ; Lim YR; Jung CS; Jang DM; Park J; Shojaei F; Kang HS
    ACS Nano; 2013 Dec; 7(12):11103-11. PubMed ID: 24195495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the Critical Role of Sn Content in SnSb@C Nanofiber Anode on Li Storage Mechanism and Battery Performance.
    Das S; Guru Row TN; Bhattacharyya AJ
    ACS Omega; 2017 Dec; 2(12):9250-9260. PubMed ID: 31457438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery.
    Shin JH; Song JY
    Nano Converg; 2016; 3(1):9. PubMed ID: 28191419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tin dioxide-based nanomaterials as anodes for lithium-ion batteries.
    Wang M; Chen T; Liao T; Zhang X; Zhu B; Tang H; Dai C
    RSC Adv; 2020 Dec; 11(2):1200-1221. PubMed ID: 35423690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimony doped SnO
    Mousavi M; Abolhassani R; Hosseini M; Akbarnejad E; Mojallal MH; Ghasemi S; Mohajerzadeh S; Sanaee Z
    Nanotechnology; 2021 Apr; 32(28):. PubMed ID: 33794508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realizing the full potential of insertion anodes for Mg-ion batteries through the nanostructuring of Sn.
    Parent LR; Cheng Y; Sushko PV; Shao Y; Liu J; Wang CM; Browning ND
    Nano Lett; 2015 Feb; 15(2):1177-82. PubMed ID: 25531653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon Oxycarbide-Tin Nanocomposite as a High-Power-Density Anode for Li-Ion Batteries.
    Dubey RJ; Sasikumar PVW; Krumeich F; Blugan G; Kuebler J; Kravchyk KV; Graule T; Kovalenko MV
    Adv Sci (Weinh); 2019 Oct; 6(19):1901220. PubMed ID: 31592424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.