BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35822449)

  • 1. Electrochemical alkene azidocyanation
    Seastram AC; Hareram MD; Knight TMB; Morrill LC
    Chem Commun (Camb); 2022 Aug; 58(62):8658-8661. PubMed ID: 35822449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of a Cyano Migration Strategy and Alkene Difunctionalization: The Elusive Selective Azidocyanation of Unactivated Olefins.
    Wu Z; Ren R; Zhu C
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10821-4. PubMed ID: 27490333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Azidocyanation of Alkenes.
    Zheng YT; Xu HC
    Angew Chem Int Ed Engl; 2024 Feb; 63(6):e202313273. PubMed ID: 37906439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical oxidative
    Harnedy J; Hareram MD; Tizzard GJ; Coles SJ; Morrill LC
    Chem Commun (Camb); 2021 Nov; 57(94):12643-12646. PubMed ID: 34762080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-catalyzed intermolecular azidocyanation of aryl alkenes.
    Xu L; Mou XQ; Chen ZM; Wang SH
    Chem Commun (Camb); 2014 Sep; 50(73):10676-9. PubMed ID: 25079085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pd/C(en) catalyzed chemoselective hydrogenation in the presence of aryl nitriles.
    Maegawa T; Fujita Y; Sakurai A; Akashi A; Sato M; Oono K; Sajiki H
    Chem Pharm Bull (Tokyo); 2007 May; 55(5):837-9. PubMed ID: 17473483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Deconstructive Functionalization of Cycloalkanols via Alkoxy Radicals Enabled by Proton-Coupled Electron Transfer.
    Hareram MD; El Gehani AAMA; Harnedy J; Seastram AC; Jones AC; Burns M; Wirth T; Browne DL; Morrill LC
    Org Lett; 2022 Jun; 24(21):3890-3895. PubMed ID: 35604008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative Palladium/Lewis Acid-Catalyzed Transfer Hydrocyanation of Alkenes and Alkynes Using 1-Methylcyclohexa-2,5-diene-1-carbonitrile.
    Bhunia A; Bergander K; Studer A
    J Am Chem Soc; 2018 Nov; 140(47):16353-16359. PubMed ID: 30392374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular nitrile oxide-alkene cycloaddition of sugar derivatives with unmasked hydroxyl group(s).
    Shing TK; Wong WF; Cheng HM; Kwok WS; So KH
    Org Lett; 2007 Mar; 9(5):753-6. PubMed ID: 17263540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De Novo Protocol for the Construction of Benzo[
    Gore BS; Chiang CH; Lee CC; Shih YL; Wang JJ
    Org Lett; 2020 Oct; 22(20):7848-7852. PubMed ID: 33021802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Co-Catalyzed Double Hydroboration of Nitriles: Application to One-Pot Conversion of Nitriles to Aldimines.
    Gudun KA; Slamova A; Hayrapetyan D; Khalimon AY
    Chemistry; 2020 Apr; 26(22):4963-4968. PubMed ID: 32052878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-accelerated, branch-selective oxidative cyanation of alkenes.
    Yang J; Li H; Qin J; Song F; Zhang J; Qing FL; Chu L
    Sci Bull (Beijing); 2018 Nov; 63(22):1479-1484. PubMed ID: 36658829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly regio- and diastereoselective, acidic clay supported intramolecular nitrile oxide-alkene cycloaddition on D-ribose derived nitriles: an efficient synthetic route to isoxazoline fused five and six membered carbocycles.
    Panda A; Das S; Pal S
    Carbohydr Res; 2014 Oct; 398():13-8. PubMed ID: 25238125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Access to Versatile Electrophiles via Catalytic Oxidative Cyanation of Alkenes.
    Gao DW; Vinogradova EV; Nimmagadda SK; Medina JM; Xiao Y; Suciu RM; Cravatt BF; Engle KM
    J Am Chem Soc; 2018 Jul; 140(26):8069-8073. PubMed ID: 29894184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new route to the synthesis of (E)- and (Z)-2-alkene-4-ynoates and nitriles from vic-iiodo-(E)-alkenes catalyzed by Pd(0) nanoparticles in water.
    Ranu BC; Chattopadhyay K
    Org Lett; 2007 Jun; 9(12):2409-12. PubMed ID: 17488036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation.
    Fang X; Yu P; Morandi B
    Science; 2016 Feb; 351(6275):832-6. PubMed ID: 26912891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypervalent iodine(III)-mediated cyclopropa(e)nation of alkenes/alkynes under mild conditions.
    Lin S; Li M; Dong Z; Liang F; Zhang J
    Org Biomol Chem; 2014 Feb; 12(8):1341-50. PubMed ID: 24435406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Oxidation of Aryl Malononitriles Enabling a Copper-Catalyzed Intermolecular Alkene Carbochlorination.
    Basnet P; Hong G; Hendrick CE; Kozlowski MC
    Org Lett; 2021 Jan; 23(2):433-437. PubMed ID: 33393785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective biotransformations of nitriles in organic synthesis.
    Wang MX
    Acc Chem Res; 2015 Mar; 48(3):602-11. PubMed ID: 25699471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Diverse Radical-Mediated 1,2-Cyanofunctionalization of Unactivated Alkenes via Synergistic Remote Cyano Migration and Protected Strategies.
    Wang N; Li L; Li ZL; Yang NY; Guo Z; Zhang HX; Liu XY
    Org Lett; 2016 Dec; 18(23):6026-6029. PubMed ID: 27934336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.