These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35822626)

  • 1. Silicon-based spectrally selective emitters with good high-temperature stability on stepped metasurfaces.
    Zhu Y; Hou G; Wang Q; Zhu T; Sun T; Xu J; Chen K
    Nanoscale; 2022 Aug; 14(30):10816-10822. PubMed ID: 35822626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting.
    Chang CC; Kort-Kamp WJM; Nogan J; Luk TS; Azad AK; Taylor AJ; Dalvit DAR; Sykora M; Chen HT
    Nano Lett; 2018 Dec; 18(12):7665-7673. PubMed ID: 30395478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems.
    Abbas MA; Kim J; Rana AS; Kim I; Rehman B; Ahmad Z; Massoud Y; Seong J; Badloe T; Park K; Mehmood MQ; Zubair M; Rho J
    Nanoscale; 2022 May; 14(17):6425-6436. PubMed ID: 35416207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and validation of a high-efficiency planar solar thermophotovoltaic system using a spectrally selective emitter.
    Bhatt R; Gupta M
    Opt Express; 2020 Jul; 28(15):21869-21890. PubMed ID: 32752460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tungsten-based metamaterial emitter for solar thermophotovoltaic systems.
    Cao Y; Zhang H; Chen N; Liu H; Feng Y; Wu X
    Phys Chem Chem Phys; 2024 May; 26(18):13909-13914. PubMed ID: 38666381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Narrowband Silicon-Based Thermal Emitter with Excellent High-Temperature Stability Fabricated by Lithography-Free Methods.
    Hou G; Wang Q; Zhu Y; Lu Z; Xu J; Chen K
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting zirconium nitride for an efficient heat-resistant absorber and emitter pair for solar thermophotovoltaic systems.
    Ijaz S; Rana AS; Ahmad Z; Rehman B; Zubair M; Mehmood MQ
    Opt Express; 2021 Sep; 29(20):31537-31548. PubMed ID: 34615245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omnidirectional, thin metasurface exhibiting selective absorption for un-polarized broadband incidence.
    Xie Q; Feng H; Wu S; Liu X; Xu Z
    Opt Express; 2022 Aug; 30(16):28737-28744. PubMed ID: 36299062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Temperature Selective Emitter Design and Materials: Titanium Aluminum Nitride Alloys for Thermophotovoltaics.
    Jeon N; Mandia DJ; Gray SK; Foley JJ; Martinson ABF
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41347-41355. PubMed ID: 31652047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon Nitride and Hydrogenated Silicon Nitride Thin Films: A Review of Fabrication Methods and Applications.
    Hegedüs N; Balázsi K; Balázsi C
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Fabrication of a Wavelength-Selective Near-Infrared Metasurface Emitter for a Thermophotovoltaic System.
    Sakurai A; Matsuno Y
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30823589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rear-Sided Passivation by SiNx:H Dielectric Layer for Improved Si/PEDOT:PSS Hybrid Heterojunction Solar Cells.
    Sun Y; Gao P; He J; Zhou S; Ying Z; Yang X; Xiang Y; Ye J
    Nanoscale Res Lett; 2016 Dec; 11(1):310. PubMed ID: 27352263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit.
    Rephaeli E; Fan S
    Opt Express; 2009 Aug; 17(17):15145-59. PubMed ID: 19687992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Selectivity Planar Thermal Emitter with a Stable Temperature over 1400 K for a Thermophotovoltaic System.
    Wang J; Wu Z; Liu Y; Hou S; Qiao Y; Tang Z; Mao J; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49123-49131. PubMed ID: 37842846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband Absorption Based on Thin Refractory Titanium Nitride Patterned Film Metasurface.
    Huo D; Ma X; Su H; Wang C; Zhao H
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Temperature Carbonized Ceria Thermophotovoltaic Emitter beyond Tungsten.
    Oh S; Cho JW; Jeong D; Lee K; Lee EJ; Shin S; Kim SK; Nam Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42724-42731. PubMed ID: 34459586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface.
    Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thin-film 'Thermal Well' Emitters and Absorbers for High-Efficiency Thermophotovoltaics.
    Tong JK; Hsu WC; Huang Y; Boriskina SV; Chen G
    Sci Rep; 2015 Jun; 5():10661. PubMed ID: 26030711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadening Bandwidths of Few-Layer Absorbers by Superimposing Two High-Loss Resonators.
    Wu D; Chen J
    Nanoscale Res Lett; 2021 Feb; 16(1):26. PubMed ID: 33566218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.