These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35822830)
1. N-terminal Ago-binding domain of GW182 contains a tryptophan-rich region that confer binding to the CCR4-NOT complex. Wakiyama M; Takimoto K Genes Cells; 2022 Sep; 27(9):579-585. PubMed ID: 35822830 [TBL] [Abstract][Full Text] [Related]
2. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. Takimoto K; Wakiyama M; Yokoyama S RNA; 2009 Jun; 15(6):1078-89. PubMed ID: 19398495 [TBL] [Abstract][Full Text] [Related]
3. Tryptophan-Mediated Interactions between Tristetraprolin and the CNOT9 Subunit Are Required for CCR4-NOT Deadenylase Complex Recruitment. Bulbrook D; Brazier H; Mahajan P; Kliszczak M; Fedorov O; Marchese FP; Aubareda A; Chalk R; Picaud S; Strain-Damerell C; Filippakopoulos P; Gileadi O; Clark AR; Yue WW; Burgess-Brown NA; Dean JLE J Mol Biol; 2018 Mar; 430(5):722-736. PubMed ID: 29291391 [TBL] [Abstract][Full Text] [Related]
4. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Chekulaeva M; Mathys H; Zipprich JT; Attig J; Colic M; Parker R; Filipowicz W Nat Struct Mol Biol; 2011 Oct; 18(11):1218-26. PubMed ID: 21984184 [TBL] [Abstract][Full Text] [Related]
5. Identification of Phosphorylated Amino Acids in Human TNRC6A C-Terminal Region and Their Effects on the Interaction with the CCR4-NOT Complex. Munakata F; Suzawa M; Ui-Tei K Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33668648 [TBL] [Abstract][Full Text] [Related]
6. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Fabian MR; Cieplak MK; Frank F; Morita M; Green J; Srikumar T; Nagar B; Yamamoto T; Raught B; Duchaine TF; Sonenberg N Nat Struct Mol Biol; 2011 Oct; 18(11):1211-7. PubMed ID: 21984185 [TBL] [Abstract][Full Text] [Related]
7. Multivalent Recruitment of Human Argonaute by GW182. Elkayam E; Faehnle CR; Morales M; Sun J; Li H; Joshua-Tor L Mol Cell; 2017 Aug; 67(4):646-658.e3. PubMed ID: 28781232 [TBL] [Abstract][Full Text] [Related]
8. Function of GW182 and GW bodies in siRNA and miRNA pathways. Yao B; Li S; Chan EK Adv Exp Med Biol; 2013; 768():71-96. PubMed ID: 23224966 [TBL] [Abstract][Full Text] [Related]
9. The role of GW182 proteins in miRNA-mediated gene silencing. Braun JE; Huntzinger E; Izaurralde E Adv Exp Med Biol; 2013; 768():147-63. PubMed ID: 23224969 [TBL] [Abstract][Full Text] [Related]
10. RIP-Chip analysis supports different roles for AGO2 and GW182 proteins in recruiting and processing microRNA targets. Perconti G; Rubino P; Contino F; Bivona S; Bertolazzi G; Tumminello M; Feo S; Giallongo A; Coronnello C BMC Bioinformatics; 2019 Apr; 20(Suppl 4):120. PubMed ID: 30999843 [TBL] [Abstract][Full Text] [Related]
11. miRISC and the CCR4-NOT complex silence mRNA targets independently of 43S ribosomal scanning. Kuzuoğlu-Öztürk D; Bhandari D; Huntzinger E; Fauser M; Helms S; Izaurralde E EMBO J; 2016 Jun; 35(11):1186-203. PubMed ID: 27009120 [TBL] [Abstract][Full Text] [Related]
12. Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals. Zielezinski A; Karlowski WM RNA Biol; 2015; 12(7):761-70. PubMed ID: 26106978 [TBL] [Abstract][Full Text] [Related]
13. An SNP in the trinucleotide repeat region of the TNRC6A gene maps to a major TNGW1 autoepitope in patients with autoantibodies to GW182. Moser JJ; Chan EK; Fritzler MJ Adv Exp Med Biol; 2013; 768():243-59. PubMed ID: 23224974 [TBL] [Abstract][Full Text] [Related]
14. The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. Lazzaretti D; Tournier I; Izaurralde E RNA; 2009 Jun; 15(6):1059-66. PubMed ID: 19383768 [TBL] [Abstract][Full Text] [Related]
15. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Chen Y; Boland A; Kuzuoğlu-Öztürk D; Bawankar P; Loh B; Chang CT; Weichenrieder O; Izaurralde E Mol Cell; 2014 Jun; 54(5):737-50. PubMed ID: 24768540 [TBL] [Abstract][Full Text] [Related]
16. Defining a new role of GW182 in maintaining miRNA stability. Yao B; La LB; Chen YC; Chang LJ; Chan EK EMBO Rep; 2012 Dec; 13(12):1102-8. PubMed ID: 23090477 [TBL] [Abstract][Full Text] [Related]
17. Control of the localization and function of a miRNA silencing component TNRC6A by Argonaute protein. Nishi K; Takahashi T; Suzawa M; Miyakawa T; Nagasawa T; Ming Y; Tanokura M; Ui-Tei K Nucleic Acids Res; 2015 Nov; 43(20):9856-73. PubMed ID: 26446993 [TBL] [Abstract][Full Text] [Related]
18. The Requirement for GW182 Scaffolding Protein Depends on Whether Argonaute Is Mediating Translation, Transcription, or Splicing. Liu J; Liu Z; Corey DR Biochemistry; 2018 Sep; 57(35):5247-5256. PubMed ID: 30086238 [TBL] [Abstract][Full Text] [Related]
19. Divergent GW182 functional domains in the regulation of translational silencing. Yao B; Li S; Jung HM; Lian SL; Abadal GX; Han F; Fritzler MJ; Chan EK Nucleic Acids Res; 2011 Apr; 39(7):2534-47. PubMed ID: 21131274 [TBL] [Abstract][Full Text] [Related]
20. Dcp1a and GW182 Induce Distinct Cellular Aggregates and Have Different Effects on microRNA Pathway. Wang X; Chang L; Wang H; Su A; Wu Z DNA Cell Biol; 2017 Jul; 36(7):565-570. PubMed ID: 28488892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]