BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35822835)

  • 1. Redox-sensitive small GTPase H-Ras in murine astrocytes, an
    Zuchegna C; Porcellini A; Messina S
    Redox Rep; 2022 Dec; 27(1):150-157. PubMed ID: 35822835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine-based regulation of redox-sensitive Ras small GTPases.
    Messina S; De Simone G; Ascenzi P
    Redox Biol; 2019 Sep; 26():101282. PubMed ID: 31386964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early and Late Induction of KRAS and HRAS Proto-Oncogenes by Reactive Oxygen Species in Primary Astrocytes.
    Messina S; Di Zazzo E; Moncharmont B
    Antioxidants (Basel); 2017 Jun; 6(3):. PubMed ID: 28661467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel.
    Killoran RC; Smith MJ
    J Biol Chem; 2019 Jun; 294(25):9937-9948. PubMed ID: 31088913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in the regulation of K-Ras and H-Ras isoforms by monoubiquitination.
    Baker R; Wilkerson EM; Sumita K; Isom DG; Sasaki AT; Dohlman HG; Campbell SL
    J Biol Chem; 2013 Dec; 288(52):36856-62. PubMed ID: 24247240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small GTPase RAS in multiple sclerosis - exploring the role of RAS GTPase in the etiology of multiple sclerosis.
    Messina S
    Small GTPases; 2020 Sep; 11(5):312-319. PubMed ID: 30043672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S.
    Huang L; Counter CM
    PLoS One; 2015; 10(4):e0123918. PubMed ID: 25902334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ras GTPases are both regulators and effectors of redox agents.
    Ferro E; Goitre L; Baldini E; Retta SF; Trabalzini L
    Methods Mol Biol; 2014; 1120():55-74. PubMed ID: 24470019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox regulation of Ras and Rho GTPases: mechanism and function.
    Mitchell L; Hobbs GA; Aghajanian A; Campbell SL
    Antioxid Redox Signal; 2013 Jan; 18(3):250-8. PubMed ID: 22657737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chaperone SmgGDS-607 has a dual role, both activating and inhibiting farnesylation of small GTPases.
    García-Torres D; Fierke CA
    J Biol Chem; 2019 Aug; 294(31):11793-11804. PubMed ID: 31197034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells.
    Adachi T; Pimentel DR; Heibeck T; Hou X; Lee YJ; Jiang B; Ido Y; Cohen RA
    J Biol Chem; 2004 Jul; 279(28):29857-62. PubMed ID: 15123696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interferon-gamma protects astrocytes from apoptosis and increases the formation of p21ras-GTP complex through ras oncogene family overexpression.
    Rubio N
    Glia; 2001 Feb; 33(2):151-9. PubMed ID: 11180512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular redox regulation by the family of small GTPases.
    Finkel T
    Antioxid Redox Signal; 2006; 8(9-10):1857-63. PubMed ID: 16987038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional diversity in the RAS subfamily of small GTPases.
    Bernal Astrain G; Nikolova M; Smith MJ
    Biochem Soc Trans; 2022 Apr; 50(2):921-933. PubMed ID: 35356965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord.
    Codeluppi S; Svensson CI; Hefferan MP; Valencia F; Silldorff MD; Oshiro M; Marsala M; Pasquale EB
    J Neurosci; 2009 Jan; 29(4):1093-104. PubMed ID: 19176818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases.
    Walkup WG; Washburn L; Sweredoski MJ; Carlisle HJ; Graham RL; Hess S; Kennedy MB
    J Biol Chem; 2015 Feb; 290(8):4908-4927. PubMed ID: 25533468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Over-expression of GTP-binding proteins and GTPase activity in mouse astrocyte membranes in response to Theiler's murine encephalomyelitis virus infection.
    Rubio N; Gonzalez-Tirante M; Arevalo MA; Aranguez I
    J Neurochem; 2008 Jan; 104(1):100-12. PubMed ID: 17995937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a dominant-negative mutant of p21(ras) inhibits induction of nitric oxide synthase and activation of nuclear factor-kappaB in primary astrocytes.
    Pahan K; Liu X; McKinney MJ; Wood C; Sheikh FG; Raymond JR
    J Neurochem; 2000 Jun; 74(6):2288-95. PubMed ID: 10820188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mice with GFAP-targeted loss of neurofibromin demonstrate increased axonal MET expression with aging.
    Su W; Xing R; Guha A; Gutmann DH; Sherman LS
    Glia; 2007 May; 55(7):723-33. PubMed ID: 17348023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1.
    Mazalouskas MD; Godoy-Ruiz R; Weber DJ; Zimmer DB; Honkanen RE; Wadzinski BE
    J Biol Chem; 2014 Feb; 289(7):4219-32. PubMed ID: 24371145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.