BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 35822879)

  • 1. Molecular architecture of 40S translation initiation complexes on the hepatitis C virus IRES.
    Brown ZP; Abaeva IS; De S; Hellen CUT; Pestova TV; Frank J
    EMBO J; 2022 Aug; 41(16):e110581. PubMed ID: 35822879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II.
    Pestova TV; de Breyne S; Pisarev AV; Abaeva IS; Hellen CU
    EMBO J; 2008 Apr; 27(7):1060-72. PubMed ID: 18337746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatitis C Virus Translation Regulation.
    Niepmann M; Gerresheim GK
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32230899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit.
    Hashem Y; des Georges A; Dhote V; Langlois R; Liao HY; Grassucci RA; Pestova TV; Hellen CU; Frank J
    Nature; 2013 Nov; 503(7477):539-43. PubMed ID: 24185006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA.
    Ji H; Fraser CS; Yu Y; Leary J; Doudna JA
    Proc Natl Acad Sci U S A; 2004 Dec; 101(49):16990-5. PubMed ID: 15563596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of translation initiation in eukaryotes.
    Pestova TV; Kolupaeva VG; Lomakin IB; Pilipenko EV; Shatsky IN; Agol VI; Hellen CU
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7029-36. PubMed ID: 11416183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pathway of HCV IRES-mediated translation initiation.
    Otto GA; Puglisi JD
    Cell; 2004 Oct; 119(3):369-80. PubMed ID: 15507208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factor requirements for translation initiation on the Simian picornavirus internal ribosomal entry site.
    de Breyne S; Yu Y; Pestova TV; Hellen CU
    RNA; 2008 Feb; 14(2):367-80. PubMed ID: 18094123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry.
    Hellen CU
    Biochim Biophys Acta; 2009; 1789(9-10):558-70. PubMed ID: 19539793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation.
    Sun C; Querol-Audí J; Mortimer SA; Arias-Palomo E; Doudna JA; Nogales E; Cate JH
    Nucleic Acids Res; 2013 Aug; 41(15):7512-21. PubMed ID: 23766293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly.
    Locker N; Easton LE; Lukavsky PJ
    EMBO J; 2007 Feb; 26(3):795-805. PubMed ID: 17255934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domains on the hepatitis C virus internal ribosome entry site for 40s subunit binding.
    Lytle JR; Wu L; Robertson HD
    RNA; 2002 Aug; 8(8):1045-55. PubMed ID: 12212848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2.
    Terenin IM; Dmitriev SE; Andreev DE; Shatsky IN
    Nat Struct Mol Biol; 2008 Aug; 15(8):836-41. PubMed ID: 18604219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP.
    Unbehaun A; Borukhov SI; Hellen CU; Pestova TV
    Genes Dev; 2004 Dec; 18(24):3078-93. PubMed ID: 15601822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. eIF5 and eIF5B together stimulate 48S initiation complex formation during ribosomal scanning.
    Pisareva VP; Pisarev AV
    Nucleic Acids Res; 2014 Oct; 42(19):12052-69. PubMed ID: 25260592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HCV IRES Captures an Actively Translating 80S Ribosome.
    Yokoyama T; Machida K; Iwasaki W; Shigeta T; Nishimoto M; Takahashi M; Sakamoto A; Yonemochi M; Harada Y; Shigematsu H; Shirouzu M; Tadakuma H; Imataka H; Ito T
    Mol Cell; 2019 Jun; 74(6):1205-1214.e8. PubMed ID: 31080011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus.
    Pisarev AV; Chard LS; Kaku Y; Johns HL; Shatsky IN; Belsham GJ
    J Virol; 2004 May; 78(9):4487-97. PubMed ID: 15078929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translation of hepatitis C virus RNA.
    Hellen CU; Pestova TV
    J Viral Hepat; 1999 Mar; 6(2):79-87. PubMed ID: 10607219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translation-competent 48S complex formation on HCV IRES requires the RNA-binding protein NSAP1.
    Park SM; Paek KY; Hong KY; Jang CJ; Cho S; Park JH; Kim JH; Jan E; Jang SK
    Nucleic Acids Res; 2011 Sep; 39(17):7791-802. PubMed ID: 21715376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eukaryotic initiation factor 5B: a new player for the anti-hepatitis C virus effect of ribavirin?
    Galmozzi E; Aghemo A; Colombo M
    Med Hypotheses; 2012 Oct; 79(4):471-3. PubMed ID: 22824093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.