BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35822887)

  • 21. Novel RNA viruses from the native range of Hymenoscyphus fraxineus, the causal fungal agent of ash dieback.
    Shamsi W; Kondo H; Ulrich S; Rigling D; Prospero S
    Virus Res; 2022 Oct; 320():198901. PubMed ID: 36058013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Canditate metabolites for ash dieback tolerance in Fraxinus excelsior.
    Nemesio-Gorriz M; Menezes RC; Paetz C; Hammerbacher A; Steenackers M; Schamp K; Höfte M; Svatoš A; Gershenzon J; Douglas GC
    J Exp Bot; 2020 Oct; 71(19):6074-6083. PubMed ID: 32598444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control.
    Kosawang C; Amby DB; Bussaban B; McKinney LV; Xu J; Kjær ED; Collinge DB; Nielsen LR
    Fungal Biol; 2018; 122(2-3):110-120. PubMed ID: 29458714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection and genetic characterisation of a novel mycovirus in Hymenoscyphus fraxineus, the causal agent of ash dieback.
    Schoebel CN; Zoller S; Rigling D
    Infect Genet Evol; 2014 Dec; 28():78-86. PubMed ID: 25219345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ability of the ash dieback pathogen to reproduce and to induce damage on its host are controlled by different environmental parameters.
    Marçais B; Giraudel A; Husson C
    PLoS Pathog; 2023 Apr; 19(4):e1010558. PubMed ID: 37079641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus.
    Fones HN; Mardon C; Gurr SJ
    Sci Rep; 2016 Oct; 6():34638. PubMed ID: 27694963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analyzing Ash Leaf-Colonizing Fungal Communities for Their Biological Control of
    Becker R; Ulrich K; Behrendt U; Kube M; Ulrich A
    Front Microbiol; 2020; 11():590944. PubMed ID: 33193255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The invasive forest pathogen Hymenoscyphus fraxineus boosts mortality and triggers niche replacement of European ash (Fraxinus excelsior).
    Díaz-Yáñez O; Mola-Yudego B; Timmermann V; Tollefsrud MM; Hietala AM; Oliva J
    Sci Rep; 2020 Mar; 10(1):5310. PubMed ID: 32210276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First Report of the Ash Dieback Pathogen Hymenoscyphus pseudoalbidus (Anamorph Chalara fraxinea) on Fraxinus excelsior in Belgium.
    Chandelier A; Delhaye N; Helson M
    Plant Dis; 2011 Feb; 95(2):220. PubMed ID: 30743446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hyfraxinic Acid, a Phytotoxic Tetrasubstituted Octanoic Acid, Produced by the Ash (
    Masi M; Di Lecce R; Tuzi A; Linaldeddu BT; Montecchio L; Maddau L; Evidente A
    J Agric Food Chem; 2019 Dec; 67(49):13617-13623. PubMed ID: 31661270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Possible Biological Control of Ash Dieback Using the Mycoparasite Hymenoscyphus Fraxineus Mitovirus 2.
    Shamsi W; Mittelstrass J; Ulrich S; Kondo H; Rigling D; Prospero S
    Phytopathology; 2024 May; 114(5):1020-1027. PubMed ID: 38114080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Endophytic Mycobiome of European Ash and Sycamore Maple Leaves - Geographic Patterns, Host Specificity and Influence of Ash Dieback.
    Schlegel M; Queloz V; Sieber TN
    Front Microbiol; 2018; 9():2345. PubMed ID: 30405540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of endophytic fungi on the ash dieback pathogen.
    Schlegel M; Dubach V; von Buol L; Sieber TN
    FEMS Microbiol Ecol; 2016 Sep; 92(9):. PubMed ID: 27364360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First Report of
    Linaldeddu BT; Bregant C; Montecchio L; Brglez A; Piškur B; Ogris N
    Plant Dis; 2022 Jan; 106(1):26-29. PubMed ID: 34515500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disturbance by invasive pathogenic fungus alters arthropod predator-prey food-webs in ash plantations.
    Michalko R; Košulič O; Martinek P; Birkhofer K
    J Anim Ecol; 2021 Sep; 90(9):2213-2226. PubMed ID: 34013522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Propagule Pressure Build-Up by the Invasive
    Hietala AM; Børja I; Solheim H; Nagy NE; Timmermann V
    Front Plant Sci; 2018; 9():1087. PubMed ID: 30105041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MAT--gene structure and mating behavior of Hymenoscyphus fraxineus and Hymenoscyphus albidus.
    Wey T; Schlegel M; Stroheker S; Gross A
    Fungal Genet Biol; 2016 Feb; 87():54-63. PubMed ID: 26724599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome sequence and genetic diversity of European ash trees.
    Sollars ES; Harper AL; Kelly LJ; Sambles CM; Ramirez-Gonzalez RH; Swarbreck D; Kaithakottil G; Cooper ED; Uauy C; Havlickova L; Worswick G; Studholme DJ; Zohren J; Salmon DL; Clavijo BJ; Li Y; He Z; Fellgett A; McKinney LV; Nielsen LR; Douglas GC; Kjær ED; Downie JA; Boshier D; Lee S; Clark J; Grant M; Bancroft I; Caccamo M; Buggs RJ
    Nature; 2017 Jan; 541(7636):212-216. PubMed ID: 28024298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Population genetic analysis of a parasitic mycovirus to infer the invasion history of its fungal host.
    Schoebel CN; Botella L; Lygis V; Rigling D
    Mol Ecol; 2017 May; 26(9):2482-2497. PubMed ID: 28160501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide epigenetic variation among ash trees differing in susceptibility to a fungal disease.
    Sollars ESA; Buggs RJA
    BMC Genomics; 2018 Jun; 19(1):502. PubMed ID: 29954338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.