These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35822887)

  • 41. Amplifying feedback loop between growth and wood anatomical characteristics of Fraxinus excelsior explains size-related susceptibility to ash dieback.
    Klesse S; von Arx G; Gossner MM; Hug C; Rigling A; Queloz V
    Tree Physiol; 2021 May; 41(5):683-696. PubMed ID: 32705118
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rising Out of the Ashes: Additive Genetic Variation for Crown and Collar Resistance to Hymenoscyphus fraxineus in Fraxinus excelsior.
    Muñoz F; Marçais B; Dufour J; Dowkiw A
    Phytopathology; 2016 Dec; 106(12):1535-1543. PubMed ID: 27349738
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular markers for tolerance of European ash (Fraxinus excelsior) to dieback disease identified using Associative Transcriptomics.
    Harper AL; McKinney LV; Nielsen LR; Havlickova L; Li Y; Trick M; Fraser F; Wang L; Fellgett A; Sollars ES; Janacek SH; Downie JA; Buggs RJ; Kjær ED; Bancroft I
    Sci Rep; 2016 Jan; 6():19335. PubMed ID: 26757823
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Comparative Analysis of Ash Leaf-Colonizing Bacterial Communities Identifies Putative Antagonists of
    Ulrich K; Becker R; Behrendt U; Kube M; Ulrich A
    Front Microbiol; 2020; 11():966. PubMed ID: 32547506
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Climate change and the ash dieback crisis.
    Goberville E; Hautekèete NC; Kirby RR; Piquot Y; Luczak C; Beaugrand G
    Sci Rep; 2016 Oct; 6():35303. PubMed ID: 27739483
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of Airborne Inoculum of Hymenoscyphus fraxineus: The Causal Agent of Ash Dieback.
    Dvořák M
    Methods Mol Biol; 2022; 2536():119-137. PubMed ID: 35819602
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ash dieback, soil and deer browsing influence natural regeneration of European ash (Fraxinus excelsior L.).
    Turczański K; Dyderski MK; Rutkowski P
    Sci Total Environ; 2021 Jan; 752():141787. PubMed ID: 32889266
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A volatile lactone of Hymenoscyphus pseudoalbidus, pathogen of European ash dieback, inhibits host germination.
    Citron CA; Junker C; Schulz B; Dickschat JS
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4346-9. PubMed ID: 24644234
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advanced spectroscopy-based phenotyping offers a potential solution to the ash dieback epidemic.
    Villari C; Dowkiw A; Enderle R; Ghasemkhani M; Kirisits T; Kjær ED; Marčiulynienė D; McKinney LV; Metzler B; Muñoz F; Nielsen LR; Pliūra A; Stener LG; Suchockas V; Rodriguez-Saona L; Bonello P; Cleary M
    Sci Rep; 2018 Nov; 8(1):17448. PubMed ID: 30487524
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fungal Communities in Re-Emerging
    Bakys R; Bajerkevičienė G; Pliūra A; Marčiulynas A; Marčiulynienė D; Lynikienė J; Mishcherikova V; Menkis A
    Microorganisms; 2022 Sep; 10(10):. PubMed ID: 36296216
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Host-Pathogen Interactions in Leaf Petioles of Common Ash and Manchurian Ash Infected with
    Nielsen LR; Nagy NE; Piqueras S; Kosawang C; Thygesen LG; Hietala AM
    Microorganisms; 2022 Feb; 10(2):. PubMed ID: 35208829
    [TBL] [Abstract][Full Text] [Related]  

  • 52. European-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.).
    George JP; Sanders TGM; Timmermann V; Potočić N; Lang M
    Sci Rep; 2022 Mar; 12(1):4764. PubMed ID: 35306516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genomic basis of European ash tree resistance to ash dieback fungus.
    Stocks JJ; Metheringham CL; Plumb WJ; Lee SJ; Kelly LJ; Nichols RA; Buggs RJA
    Nat Ecol Evol; 2019 Dec; 3(12):1686-1696. PubMed ID: 31740845
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genomic prediction of resistance to
    Meger J; Ulaszewski B; Pałucka M; Kozioł C; Burczyk J
    Evol Appl; 2024 May; 17(5):e13694. PubMed ID: 38707993
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The £15 billion cost of ash dieback in Britain.
    Hill L; Jones G; Atkinson N; Hector A; Hemery G; Brown N
    Curr Biol; 2019 May; 29(9):R315-R316. PubMed ID: 31063720
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in Europe.
    Baral HO; Queloz V; Hosoya T
    IMA Fungus; 2014 Jun; 5(1):79-80. PubMed ID: 25083409
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Population structure of the ash dieback pathogen,
    Orton ES; Brasier CM; Bilham LJ; Bansal A; Webber JF; Brown JKM
    Plant Pathol; 2018 Feb; 67(2):255-264. PubMed ID: 29527064
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.
    Sambles CM; Salmon DL; Florance H; Howard TP; Smirnoff N; Nielsen LR; McKinney LV; Kjær ED; Buggs RJA; Studholme DJ; Grant M
    Sci Data; 2017 Dec; 4():170190. PubMed ID: 29257137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genotypes of Fraxinus excelsior with different susceptibility to the ash dieback pathogen Hymenoscyphus pseudoalbidus and their response to the phytotoxin viridiol - a metabolomic and microscopic study.
    Cleary MR; Andersson PF; Broberg A; Elfstrand M; Daniel G; Stenlid J
    Phytochemistry; 2014 Jun; 102():115-25. PubMed ID: 24709032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genomic Characterization of
    Becker R; Ulrich K; Behrendt U; Schneck V; Ulrich A
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.