BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35823311)

  • 21. Authentication of vegetable oils by chromatographic techniques.
    Aparicio R; Aparicio-Ruíz R
    J Chromatogr A; 2000 Jun; 881(1-2):93-104. PubMed ID: 10905696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Economically Motivated Food Fraud and Adulteration in Brazil: Incidents and Alternatives to Minimize Occurrence.
    Tibola CS; da Silva SA; Dossa AA; Patrício DI
    J Food Sci; 2018 Aug; 83(8):2028-2038. PubMed ID: 30020548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HPLC-UV/HRMS methods for the unambiguous detection of adulterations of
    Bampali E; Germer S; Bauer R; Kulić Ž
    Pharm Biol; 2021 Dec; 59(1):438-443. PubMed ID: 33886418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolomics for the Authentication of Natural Extracts Used in Flavors and Fragrances: the Case Study of Violet Leaf Absolutes from Viola odorata.
    Saint-Lary L; Roy C; Paris JP; Martin JF; Thomas OP; Fernandez X
    Chem Biodivers; 2016 Jun; 13(6):737-47. PubMed ID: 27135901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Opportunities for fraudsters: When would profitable milk adulterations go unnoticed by common, standardized FTIR measurements?
    Yang Y; Hettinga KA; Erasmus SW; Pustjens AM; van Ruth SM
    Food Res Int; 2020 Oct; 136():109543. PubMed ID: 32846598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid analysis of adulterations in Chinese lotus root powder (LRP) by near-infrared (NIR) spectroscopy coupled with chemometric class modeling techniques.
    Xu L; Shi PT; Ye ZH; Yan SM; Yu XP
    Food Chem; 2013 Dec; 141(3):2434-9. PubMed ID: 23870978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection and quantification of adulterations in aged wine using RGB digital images combined with multivariate chemometric techniques.
    Herrero-Latorre C; Barciela-García J; García-Martín S; Peña-Crecente RM
    Food Chem X; 2019 Sep; 3():100046. PubMed ID: 31432023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adulterations in Basmati rice detected quantitatively by combined use of microsatellite and fragrance typing with High Resolution Melting (HRM) analysis.
    Ganopoulos I; Argiriou A; Tsaftaris A
    Food Chem; 2011 Nov; 129(2):652-659. PubMed ID: 30634282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feasibility of near-infrared spectroscopy to detect and to quantify adulterants in cow milk.
    Kasemsumran S; Thanapase W; Kiatsoonthon A
    Anal Sci; 2007 Jul; 23(7):907-10. PubMed ID: 17625339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fusion of near-infrared and fluorescence spectroscopy for untargeted fraud detection of Chinese tea seed oil using chemometric methods.
    Hu O; Chen J; Gao P; Li G; Du S; Fu H; Shi Q; Xu L
    J Sci Food Agric; 2019 Mar; 99(5):2285-2291. PubMed ID: 30324617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mass spectrometry-based protein and peptide profiling for food frauds, traceability and authenticity assessment.
    Valletta M; Ragucci S; Landi N; Di Maro A; Pedone PV; Russo R; Chambery A
    Food Chem; 2021 Dec; 365():130456. PubMed ID: 34243122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adverse child health impacts resulting from food adulterations in the Greater China Region.
    Li WC; Chow CF
    J Sci Food Agric; 2017 Sep; 97(12):3897-3916. PubMed ID: 28466508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triacylglycerols in edible oils: Determination, characterization, quantitation, chemometric approach and evaluation of adulterations.
    Indelicato S; Bongiorno D; Pitonzo R; Di Stefano V; Calabrese V; Indelicato S; Avellone G
    J Chromatogr A; 2017 Sep; 1515():1-16. PubMed ID: 28801042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dietary supplements: International legal framework and adulteration profiles, and characteristics of products on the Brazilian clandestine market.
    da Justa Neves DB; Caldas ED
    Regul Toxicol Pharmacol; 2015 Oct; 73(1):93-104. PubMed ID: 26107294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Urinary melamine: proposed parameter of melamine adulteration of food.
    Rai N; Banerjee D; Bhattacharyya R
    Nutrition; 2014 Apr; 30(4):380-5. PubMed ID: 24206822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses to dietary adulterations in rats with zona incerta lesions.
    Dalton LD; Grossman SP
    Physiol Behav; 1982 Jul; 29(1):51-60. PubMed ID: 7122735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Barcode High Resolution Melting (Bar-HRM) analysis for detection and quantification of PDO "Fava Santorinis" (Lathyrus clymenum) adulterants.
    Ganopoulos I; Madesis P; Darzentas N; Argiriou A; Tsaftaris A
    Food Chem; 2012 Jul; 133(2):505-12. PubMed ID: 25683426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Food adulteration: Sources, health risks, and detection methods.
    Bansal S; Singh A; Mangal M; Mangal AK; Kumar S
    Crit Rev Food Sci Nutr; 2017 Apr; 57(6):1174-1189. PubMed ID: 26054861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adulteration of Argentinean milk fats with animal fats: Detection by fatty acids analysis and multivariate regression techniques.
    Rebechi SR; Vélez MA; Vaira S; Perotti MC
    Food Chem; 2016 Feb; 192():1025-32. PubMed ID: 26304443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput analysis by SP-LDI-MS for fast identification of adulterations in commercial balsamic vinegars.
    Guerreiro TM; de Oliveira DN; Ferreira MS; Catharino RR
    Anal Chim Acta; 2014 Aug; 838():86-92. PubMed ID: 25064247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.