These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 3582505)
1. Detection of the cross-linking amino acid, histidinoalanine, in human brown cataractous lens protein. Kanayama T; Miyanaga Y; Horiuchi K; Fujimoto D Exp Eye Res; 1987 Feb; 44(2):165-9. PubMed ID: 3582505 [TBL] [Abstract][Full Text] [Related]
2. Dehydroalanine crosslinks in human lens. Linetsky M; Hill JM; LeGrand RD; Hu F Exp Eye Res; 2004 Oct; 79(4):499-512. PubMed ID: 15381034 [TBL] [Abstract][Full Text] [Related]
3. [The role of the crosslinking amino acid, histidinoalanine, in the human nuclear cataractous lens]. Kanayama T; Miyanaga Y; Horiuchi K; Fujimoto D Nippon Ganka Gakkai Zasshi; 1987 Jan; 91(1):118-21. PubMed ID: 3591570 [No Abstract] [Full Text] [Related]
4. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis. Simpanya MF; Ansari RR; Suh KI; Leverenz VR; Giblin FJ Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4641-51. PubMed ID: 16303961 [TBL] [Abstract][Full Text] [Related]
5. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [TBL] [Abstract][Full Text] [Related]
6. Changes in lens proteins in undernourished and well-nourished patients with cataract. Bhat KS Br J Nutr; 1982 May; 47(3):483-8. PubMed ID: 7082620 [TBL] [Abstract][Full Text] [Related]
7. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous generation of superoxide anion by human lens proteins and by calf lens proteins ascorbylated in vitro. Linetsky M; James HL; Ortwerth BJ Exp Eye Res; 1999 Aug; 69(2):239-48. PubMed ID: 10433859 [TBL] [Abstract][Full Text] [Related]
9. Characterization of water-insoluble proteins in normal and cataractous human lens. Kamei A Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364 [TBL] [Abstract][Full Text] [Related]
10. Lanthionine, a protein cross-link in cataractous human lenses. Bessems GJ; Rennen HJ; Hoenders HJ Exp Eye Res; 1987 May; 44(5):691-5. PubMed ID: 3622648 [TBL] [Abstract][Full Text] [Related]
11. Protein-bound kynurenine decreases with the progression of age-related nuclear cataract. Vazquez S; Parker NR; Sheil M; Truscott RJ Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):879-83. PubMed ID: 14985305 [TBL] [Abstract][Full Text] [Related]
12. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography. Pereira PC; Ramalho JS; Faro CJ; Mota MC Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432 [TBL] [Abstract][Full Text] [Related]
13. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses. Bessems GJ; Keizer E; Wollensak J; Hoenders HJ Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993 [TBL] [Abstract][Full Text] [Related]
14. Protein changes in the human lens during development of senile nuclear cataract. Kramps HA; Hoenders HJ; Wollensak J Biochim Biophys Acta; 1976 May; 434(1):32-43. PubMed ID: 938670 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
16. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
17. Distribution of water-soluble crystallins in microsectioned cataractous lenses from one hundred Egyptian patients. Bours J; el-Layeh AA; Emarah MH; Rink H Ophthalmic Res; 1995; 27 Suppl 1():54-61. PubMed ID: 8577463 [TBL] [Abstract][Full Text] [Related]
18. Non-oxidative modification of lens crystallins by kynurenine: a novel post-translational protein modification with possible relevance to ageing and cataract. Garner B; Shaw DC; Lindner RA; Carver JA; Truscott RJ Biochim Biophys Acta; 2000 Feb; 1476(2):265-78. PubMed ID: 10669791 [TBL] [Abstract][Full Text] [Related]
19. Analysis of low molecular weight fractions in human senile cataractous lens. Takehana M; Takemoto LJ; Iwata S Jpn J Ophthalmol; 1983; 27(4):585-91. PubMed ID: 6668751 [TBL] [Abstract][Full Text] [Related]
20. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach. Su SP; McArthur JD; Andrew Aquilina J Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]