These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3582539)

  • 21. Waveform parameters of recurrent inhibitory postsynaptic potentials in cat motoneurons during time-varying activation patterns.
    Boorman G; Windhorst U; Kirmayer D
    Neuroscience; 1994 Dec; 63(3):747-56. PubMed ID: 7898674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phasic modulation of short latency cutaneous excitation in flexor digitorum longus motoneurons during fictive locomotion.
    Schmidt BJ; Meyers DE; Fleshman JW; Tokuriki M; Burke RE
    Exp Brain Res; 1988; 71(3):568-78. PubMed ID: 3416970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholinergic contribution to excitation in a spinal locomotor central pattern generator in Xenopus embryos.
    Perrins R; Roberts A
    J Neurophysiol; 1995 Mar; 73(3):1013-9. PubMed ID: 7608751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator.
    Lafreniere-Roula M; McCrea DA
    J Neurophysiol; 2005 Aug; 94(2):1120-32. PubMed ID: 15872066
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Renshaw cell activity and recurrent effects on motoneurons during fictive locomotion.
    McCrea DA; Pratt CA; Jordan LM
    J Neurophysiol; 1980 Sep; 44(3):475-88. PubMed ID: 7441311
    [No Abstract]   [Full Text] [Related]  

  • 26. Disynaptic vestibulospinal and reticulospinal excitation in cat lumbosacral motoneurons: modulation during fictive locomotion.
    Gossard JP; Floeter MK; Degtyarenko AM; Simon ES; Burke RE
    Exp Brain Res; 1996 May; 109(2):277-88. PubMed ID: 8738376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos.
    Roberts A; Dale N; Evoy WH; Soffe SR
    J Neurophysiol; 1985 Jul; 54(1):1-10. PubMed ID: 2993537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lateral turns in the Lamprey. I. Patterns of motoneuron activity.
    Fagerstedt P; Ullén F
    J Neurophysiol; 2001 Nov; 86(5):2246-56. PubMed ID: 11698515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hind limb motoneurons activity during fictive locomotion or scratching induced by pinna stimulation, serotonin, or glutamic acid in brain cortex-ablated cats.
    Duenas-Jimenez SH; Castillo Hernandez L; de la Torre Valdovinos B; Mendizabal Ruiz G; Duenas Jimenez JM; Ramirez Abundis V; Aguilar Garcia IG
    Physiol Rep; 2017 Sep; 5(18):. PubMed ID: 28963128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bistable characteristics of motoneurone activity during DOPA induced fictive locomotion in spinal cats.
    Schomburg ED; Steffens H
    Neurosci Res; 1996 Sep; 26(1):47-56. PubMed ID: 8895891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motoneuron output regulated by ionic channels: a modeling study of motoneuron frequency-current relationships during fictive locomotion.
    Dai Y; Cheng Y; Fedirchuk B; Jordan LM; Chu J
    J Neurophysiol; 2018 Oct; 120(4):1840-1858. PubMed ID: 30044677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locomotor modulation of disynaptic EPSPs from the mesencephalic locomotor region in cat motoneurons.
    Degtyarenko AM; Simon ES; Burke RE
    J Neurophysiol; 1998 Dec; 80(6):3284-96. PubMed ID: 9862922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular analysis of reflex pathways underlying the stumbling corrective reaction during fictive locomotion in the cat.
    Quevedo J; Stecina K; McCrea DA
    J Neurophysiol; 2005 Sep; 94(3):2053-62. PubMed ID: 15917324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Target selection of proprioceptive and motor axon synapses on neonatal V1-derived Ia inhibitory interneurons and Renshaw cells.
    Siembab VC; Smith CA; Zagoraiou L; Berrocal MC; Mentis GZ; Alvarez FJ
    J Comp Neurol; 2010 Dec; 518(23):4675-701. PubMed ID: 20963823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peripheral and central control of flexor digitorum longus and flexor hallucis longus motoneurons: the synaptic basis of functional diversity.
    Fleshman JW; Lev-Tov A; Burke RE
    Exp Brain Res; 1984; 54(1):133-49. PubMed ID: 6321220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT
    Cabaj AM; Majczyński H; Couto E; Gardiner PF; Stecina K; Sławińska U; Jordan LM
    J Physiol; 2017 Jan; 595(1):301-320. PubMed ID: 27393215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Central pattern generator interneurons are targets for the modulatory serotonergic cerebral giant cells in the feeding system of Lymnaea.
    Yeoman MS; Brierley MJ; Benjamin PR
    J Neurophysiol; 1996 Jan; 75(1):11-25. PubMed ID: 8822538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
    Rybak IA; Shevtsova NA; Lafreniere-Roula M; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):617-39. PubMed ID: 17008376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity of interneurons mediating reciprocal 1a inhibition during locomotion.
    Feldman AG; Orlovsky GN
    Brain Res; 1975 Feb; 84(2):181-94. PubMed ID: 1111829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diisopropylfluorophosphate and tetanic stimulation fail to reverse mecamylamine antagonism of Renshaw cells.
    VanMeter WG
    Fundam Appl Toxicol; 1984 Apr; 4(2 Pt 2):S150-5. PubMed ID: 6724206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.