BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3582726)

  • 1. Multiple forms of cerebral peptides with steroidogenic functions in pupal and adult brains of the yellow fever mosquito, Aedes aegypti.
    Whisenton LR; Kelly TJ; Bollenbacher WE
    Mol Cell Endocrinol; 1987 Mar; 50(1-2):3-14. PubMed ID: 3582726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hormonal regulation of ovarian ecdysteroid production in the autogenous mosquito, Aedes atropalpus.
    Birnbaum MJ; Kelly TJ; Woods CW; Imberski RB
    Gen Comp Endocrinol; 1984 Oct; 56(1):9-18. PubMed ID: 6541607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Egg maturation and ecdysiotropic activity in extracts of mosquito (Aedes aegypti) heads.
    Wheelock GD; Hagedorn HH
    Gen Comp Endocrinol; 1985 Nov; 60(2):196-203. PubMed ID: 4065529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial purification of egg development neurosecretory hormone with reverse-phase liquid chromatographic techniques.
    Masler EP; Hagedorn HH; Petzel DH; Borkovec AB
    Life Sci; 1983 Nov; 33(19):1925-31. PubMed ID: 6645786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium influx enhances neuropeptide activation of ecdysteroid hormone production by mosquito ovaries.
    McKinney DA; Eum JH; Dhara A; Strand MR; Brown MR
    Insect Biochem Mol Biol; 2016 Mar; 70():160-9. PubMed ID: 26772671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of cyclic AMP-dependent protein kinase in prothoracicotropic hormone-stimulated ecdysone synthesis.
    Smith WA; Combest WL; Gilbert LI
    Mol Cell Endocrinol; 1986 Sep; 47(1-2):25-33. PubMed ID: 3017787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid isolation of a neurohormone from mosquito heads by high-performance liquid chromatography.
    Wheelock GD; Sieber KP; Hagedorn HH
    J Chromatogr; 1991 Apr; 542(2):508-14. PubMed ID: 1880189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular changes in the prothoracic glands of diapausing pupae of Manduca sexta.
    Smith WA; Bowen MF; Bollenbacher WE; Gilbert LI
    J Exp Biol; 1986 Jan; 120():131-42. PubMed ID: 2420915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the brain hormone on retention of blood in the mid-gut of the mosquito Aedes aegypti (L.). III. The involvement of the ovaries and ecdysone.
    Cole SJ; Gillett JD
    Proc R Soc Lond B Biol Sci; 1979 Aug; 205(1160):411-22. PubMed ID: 41256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of cyclic AMP in the regulation of ecdysone synthesis.
    Smith WA; Gilbert LI; Bollenbacher WE
    Mol Cell Endocrinol; 1984 Oct; 37(3):285-94. PubMed ID: 6209178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the early-late gene encoding the nuclear receptor HR3 suggests its involvement in regulating the vitellogenic response to ecdysone in the adult mosquito.
    Kapitskaya MZ; Li C; Miura K; Segraves W; Raikhel AS
    Mol Cell Endocrinol; 2000 Feb; 160(1-2):25-37. PubMed ID: 10715536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lethal effects of synthetic juvenile hormone on larvae of the yellow fever mosquito, Aedes aegypti.
    Spielman A; Williams CM
    Science; 1966 Nov; 154(3752):1043-4. PubMed ID: 5919758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Severe developmental timing defects in the prothoracicotropic hormone (PTTH)-deficient silkworm, Bombyx mori.
    Uchibori-Asano M; Kayukawa T; Sezutsu H; Shinoda T; Daimon T
    Insect Biochem Mol Biol; 2017 Aug; 87():14-25. PubMed ID: 28627423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecdysteroid titers and developmental expression of ecdysteroid-regulated genes during metamorphosis of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae).
    Margam VM; Gelman DB; Palli SR
    J Insect Physiol; 2006 Jun; 52(6):558-68. PubMed ID: 16580015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical period for pupal commitment in the yellow fever mosquito, Aedes aegypti.
    Lan Q; Grier CA
    J Insect Physiol; 2004 Jul; 50(7):667-76. PubMed ID: 15234627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic analysis of the action of the insect prothoracicotropic hormone.
    Bollenbacher WE; O'Brien MA; Katahira EJ; Gilbert LI
    Mol Cell Endocrinol; 1983 Sep; 32(1):27-46. PubMed ID: 6628834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Juvenile hormone regulates the steroidogenic competence of Manduca sexta prothoracic glands.
    Watson RD; Bollenbacher WE
    Mol Cell Endocrinol; 1988 Jun; 57(3):251-9. PubMed ID: 2841180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and expression of PBAN/diapause hormone and GPCRs from Aedes aegypti.
    Choi MY; Estep A; Sanscrainte N; Becnel J; Vander Meer RK
    Mol Cell Endocrinol; 2013 Aug; 375(1-2):113-20. PubMed ID: 23727337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Juvenile hormone and the development of ovarian responsiveness to a brain hormone in the mosquito, Aedes aegypti.
    Shapiro JP; Hagedorn HH
    Gen Comp Endocrinol; 1982 Feb; 46(2):176-83. PubMed ID: 7106542
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action.
    Wu Y; Parthasarathy R; Bai H; Palli SR
    Mech Dev; 2006 Jul; 123(7):530-47. PubMed ID: 16829058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.