BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 3582746)

  • 61. The influence of the chemical composition of cell culture material on the growth and antibody production of hybridoma cells.
    Heilmann K; Groth T; Behrsing O; Albrecht W; Schossig M; Lendlein A; Micheel B
    J Biotechnol; 2005 Feb; 115(3):291-301. PubMed ID: 15639091
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A perfusion system for high productivity of monoclonal antibody by hybridoma cells in a CelliGen bioreactor.
    Chen Y
    Chin J Biotechnol; 1992; 8(3):179-86. PubMed ID: 1295598
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: effect of nutrient concentration, dilution rate, and pH. Reprinted from Biotechnology and Bioengineering, Vol. 32, Pp 947-965 (1988).
    Miller WM; Blanch HW; Wilke CR
    Biotechnol Bioeng; 2000 Mar; 67(6):853-71. PubMed ID: 10699863
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Metabolic activity and monoclonal antibody production of Salmonella enteritidis O and H antigen specific hybridoma cells in static culture.
    Nalbantsoy A; Bora K; Deliloglu-Gurhan I
    Hybridoma (Larchmt); 2011 Apr; 30(2):189-93. PubMed ID: 21529293
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Monoclonal antibody production in dialyzed continuous suspension culture.
    Linardos TI; Kalogerakis N; Behie LA; Lamontagne LR
    Biotechnol Bioeng; 1992 Mar; 39(5):504-10. PubMed ID: 18600976
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production.
    Ozturk SS; Riley MR; Palsson BO
    Biotechnol Bioeng; 1992 Feb; 39(4):418-31. PubMed ID: 18600963
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biochemistry of hybridoma technology.
    Wilson R; Spier RE
    Dev Biol Stand; 1987; 66():161-7. PubMed ID: 3582745
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture.
    Holland T; Sack M; Rademacher T; Schmale K; Altmann F; Stadlmann J; Fischer R; Hellwig S
    Biotechnol Bioeng; 2010 Oct; 107(2):278-89. PubMed ID: 20506104
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A comparison of different culture methods for hybridoma propagation and monoclonal antibody production.
    Marquis CP; Harbour C; Barford JP; Low KS
    Cytotechnology; 1990 Jul; 4(1):69-76. PubMed ID: 1366723
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Large-scale production of monoclonal antibodies in defined serum-free media in airlift bioreactors.
    Petrossian A; Cortessis GP
    Biotechniques; 1990 Apr; 8(4):414-22. PubMed ID: 2340179
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Suppression of apoptosis in perfusion culture of Myeloma NS0 cells enhances cell growth but reduces antibody productivity.
    Tey BT; Al-Rubeai M
    Apoptosis; 2004 Nov; 9(6):843-52. PubMed ID: 15505426
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular integrity of monoclonal antibodies produced by hybridoma cells in batch culture and in continuous-flow culture with integrated product recovery.
    Mohan SB; Chohan SR; Eade J; Lyddiatt A
    Biotechnol Bioeng; 1993 Oct; 42(8):974-86. PubMed ID: 18613146
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Medium-scale production and purification of monoclonal antibodies in protein-free medium.
    Tarleton RL; Beyer AM
    Biotechniques; 1991 Nov; 11(5):590-3. PubMed ID: 1804247
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhanced antibody production following intermediate addition based on flux analysis in mammalian cell continuous culture.
    Omasa T; Furuichi K; Iemura T; Katakura Y; Kishimoto M; Suga K
    Bioprocess Biosyst Eng; 2010 Jan; 33(1):117-25. PubMed ID: 19590901
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ammonia inhibition of hybridomas propagated in batch, fed-batch, and continuous culture.
    Newland M; Kamal MN; Greenfield PF; Nielsen LK
    Biotechnol Bioeng; 1994 Mar; 43(5):434-8. PubMed ID: 18615727
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Metabolic engineering of animal cells.
    Häggström L; Ljunggren J; Ohman L
    Ann N Y Acad Sci; 1996 May; 782():40-52. PubMed ID: 8659912
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tissue culture in hollow-fibre systems: implications for downstream processing and stability analysis.
    Tiebout RF
    Dev Biol Stand; 1990; 71():65-71. PubMed ID: 2119319
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modeling kinetics of a large-scale fed-batch CHO cell culture by Markov chain Monte Carlo method.
    Xing Z; Bishop N; Leister K; Li ZJ
    Biotechnol Prog; 2010; 26(1):208-19. PubMed ID: 19834967
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Process-scale purification from cell culture supernatants: monoclonal antibodies.
    Ostlund C; Borwell P; Malm B
    Dev Biol Stand; 1987; 66():367-75. PubMed ID: 3108053
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures.
    Gagnon M; Hiller G; Luan YT; Kittredge A; DeFelice J; Drapeau D
    Biotechnol Bioeng; 2011 Jun; 108(6):1328-37. PubMed ID: 21328318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.