BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35829631)

  • 1. Horseshoe lamination mixer (HLM) sets new standards in the production of monodisperse lipid nanoparticles.
    Erfle P; Riewe J; Cai S; Bunjes H; Dietzel A
    Lab Chip; 2022 Aug; 22(16):3025-3044. PubMed ID: 35829631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Goodbye fouling: a unique coaxial lamination mixer (CLM) enabled by two-photon polymerization for the stable production of monodisperse drug carrier nanoparticles.
    Erfle P; Riewe J; Bunjes H; Dietzel A
    Lab Chip; 2021 Jun; 21(11):2178-2193. PubMed ID: 33861294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Digital Twin of the Coaxial Lamination Mixer for the Systematic Study of Mixing Performance and the Prediction of Precipitated Nanoparticle Properties.
    Cai S; Erfle P; Dietzel A
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antisolvent precipitation of lipid nanoparticles in microfluidic systems - A comparative study.
    Riewe J; Erfle P; Melzig S; Kwade A; Dietzel A; Bunjes H
    Int J Pharm; 2020 Apr; 579():119167. PubMed ID: 32087265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilized Production of Lipid Nanoparticles of Tunable Size in Taylor Flow Glass Devices with High-Surface-Quality 3D Microchannels.
    Erfle P; Riewe J; Bunjes H; Dietzel A
    Micromachines (Basel); 2019 Mar; 10(4):. PubMed ID: 30934803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed microfluidic device for high-throughput production of lipid nanoparticles incorporating SARS-CoV-2 spike protein mRNA.
    Lin WS; Bostic WKV; Malmstadt N
    Lab Chip; 2024 Jan; 24(2):162-170. PubMed ID: 38165143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antisolvent fabrication of monodisperse liposomes using novel ultrasonic microreactors: Process optimization, performance comparison and intensification effect.
    Peng C; Zhu X; Zhang J; Zhao W; Jia J; Wu Z; Yu Z; Dong Z
    Ultrason Sonochem; 2024 Feb; 103():106769. PubMed ID: 38266590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of large-scale manufacturing of biopolymeric and lipid nanoparticles using microfluidic swirl mixers.
    Tomeh MA; Mansor MH; Hadianamrei R; Sun W; Zhao X
    Int J Pharm; 2022 May; 620():121762. PubMed ID: 35472511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidics: a transformational tool for nanomedicine development and production.
    Garg S; Heuck G; Ip S; Ramsay E
    J Drug Target; 2016 Nov; 24(9):821-835. PubMed ID: 27492254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method.
    Kawasaki S; Sue K; Ookawara R; Wakashima Y; Suzuki A
    J Oleo Sci; 2010; 59(10):557-62. PubMed ID: 20877149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Preparation of Nanoparticles Using Poly(ethylene Glycol)-distearoylphosphatidylethanolamine for Solubilizing Poorly Soluble Drugs.
    Terada T; Kanou M; Hashimoto Y; Tanimoto M; Sugimoto M
    J Pharm Sci; 2022 Jun; 111(6):1709-1718. PubMed ID: 34863973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy.
    Xu R; Tomeh MA; Ye S; Zhang P; Lv S; You R; Wang N; Zhao X
    Int J Pharm; 2022 Jun; 622():121857. PubMed ID: 35623489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.
    Dong Y; Ng WK; Hu J; Shen S; Tan RB
    Int J Pharm; 2010 Feb; 386(1-2):256-61. PubMed ID: 19922777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.
    Hood RR; DeVoe DL
    Small; 2015 Nov; 11(43):5790-9. PubMed ID: 26395346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: effect of passive mixing.
    Ortiz de Solorzano I; Uson L; Larrea A; Miana M; Sebastian V; Arruebo M
    Int J Nanomedicine; 2016; 11():3397-416. PubMed ID: 27524896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery.
    He Z; Hu Y; Nie T; Tang H; Zhu J; Chen K; Liu L; Leong KW; Chen Y; Mao HQ
    Acta Biomater; 2018 Nov; 81():195-207. PubMed ID: 30267888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers.
    Chen H; Celik AE; Mutschler A; Combes A; Runser A; Klymchenko AS; Lecommandoux S; Serra CA; Reisch A
    Langmuir; 2022 Jul; 38(26):7945-7955. PubMed ID: 35731957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles.
    Rasouli MR; Tabrizian M
    Lab Chip; 2019 Oct; 19(19):3316-3325. PubMed ID: 31495858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic-assisted nanoprecipitation of (PEGylated) poly (d,l-lactic acid-co-caprolactone): Effect of macromolecular and microfluidic parameters on particle size and paclitaxel encapsulation.
    Lallana E; Donno R; Magrì D; Barker K; Nazir Z; Treacher K; Lawrence MJ; Ashford M; Tirelli N
    Int J Pharm; 2018 Sep; 548(1):530-539. PubMed ID: 30009983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.