BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35829631)

  • 21. Fine control over the size of surfactant-polyelectrolyte nanoparticles by hydrodynamic flow focusing.
    Tresset G; Marculescu C; Salonen A; Ni M; Iliescu C
    Anal Chem; 2013 Jun; 85(12):5850-6. PubMed ID: 23713852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing.
    Valencia PM; Basto PA; Zhang L; Rhee M; Langer R; Farokhzad OC; Karnik R
    ACS Nano; 2010 Mar; 4(3):1671-9. PubMed ID: 20166699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Process Robustness in Lipid Nanoparticle Production: A Comparison of Microfluidic and Turbulent Jet Mixing.
    O'Brien Laramy MN; Costa AP; Cebrero YM; Joseph J; Sarode A; Zang N; Kim LJ; Hofmann K; Wang S; Goyon A; Koenig SG; Hammel M; Hura GL
    Mol Pharm; 2023 Aug; 20(8):4285-4296. PubMed ID: 37462906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic methods for production of liposomes.
    Yu B; Lee RJ; Lee LJ
    Methods Enzymol; 2009; 465():129-41. PubMed ID: 19913165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An acoustofluidic device for efficient mixing over a wide range of flow rates.
    Bachman H; Chen C; Rufo J; Zhao S; Yang S; Tian Z; Nama N; Huang PH; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1238-1248. PubMed ID: 32104816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale.
    Feng J; Markwalter CE; Tian C; Armstrong M; Prud'homme RK
    J Transl Med; 2019 Jun; 17(1):200. PubMed ID: 31200738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride.
    Yaghmur A; Ghazal A; Ghazal R; Dimaki M; Svendsen WE
    Phys Chem Chem Phys; 2019 Jun; 21(24):13005-13013. PubMed ID: 31165825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers.
    Hood RR; Shao C; Omiatek DM; Vreeland WN; DeVoe DL
    Pharm Res; 2013 Jun; 30(6):1597-607. PubMed ID: 23386106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors.
    Ali HS; York P; Blagden N
    Int J Pharm; 2009 Jun; 375(1-2):107-13. PubMed ID: 19481696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production.
    Chow SF; Sun CC; Chow AH
    Eur J Pharm Biopharm; 2014 Oct; 88(2):462-71. PubMed ID: 25016977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic platform for controlled synthesis of polymeric nanoparticles.
    Karnik R; Gu F; Basto P; Cannizzaro C; Dean L; Kyei-Manu W; Langer R; Farokhzad OC
    Nano Lett; 2008 Sep; 8(9):2906-12. PubMed ID: 18656990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parametric Study of the Factors Influencing Liposome Physicochemical Characteristics in a Periodic Disturbance Mixer.
    López RR; Ocampo I; Font de Rubinat PG; Sánchez LM; Alazzam A; Tsering T; Bergeron KF; Camacho-Léon S; Burnier JV; Mounier C; Stiharu I; Nerguizian V
    Langmuir; 2021 Jul; 37(28):8544-8556. PubMed ID: 34232664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery.
    Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scalable Liposome Synthesis by High Aspect Ratio Microfluidic Flow Focusing.
    Han JY; Chen Z; Devoe DL
    Methods Mol Biol; 2023; 2622():87-93. PubMed ID: 36781752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles.
    Lorenz T; Bojko S; Bunjes H; Dietzel A
    Lab Chip; 2018 Feb; 18(4):627-638. PubMed ID: 29345261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach.
    Zizzari A; Bianco M; Carbone L; Perrone E; Amato F; Maruccio G; Rendina F; Arima V
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29232873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles.
    Hong JS; Stavis SM; DePaoli Lacerda SH; Locascio LE; Raghavan SR; Gaitan M
    Langmuir; 2010 Jul; 26(13):11581-8. PubMed ID: 20429539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform.
    Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic preparation and in vitro evaluation of iRGD-functionalized solid lipid nanoparticles for targeted delivery of paclitaxel to tumor cells.
    Arduino I; Liu Z; Iacobazzi RM; Lopedota AA; Lopalco A; Cutrignelli A; Laquintana V; Porcelli L; Azzariti A; Franco M; Santos HA; Denora N
    Int J Pharm; 2021 Dec; 610():121246. PubMed ID: 34737115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic manufacturing of phospholipid nanoparticles: Stability, encapsulation efficacy, and drug release.
    Guimarães Sá Correia M; Briuglia ML; Niosi F; Lamprou DA
    Int J Pharm; 2017 Jan; 516(1-2):91-99. PubMed ID: 27840162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.