These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35829650)

  • 1. Engineering Saccharomyces cerevisiae-based biosensors for copper detection.
    Fan C; Zhang D; Mo Q; Yuan J
    Microb Biotechnol; 2022 Nov; 15(11):2854-2860. PubMed ID: 35829650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Highly Efficient Copper-Inducible
    Zhou P; Fang X; Xu N; Yao Z; Xie W; Ye L
    ACS Synth Biol; 2021 Dec; 10(12):3435-3444. PubMed ID: 34874147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vectors allowing amplified expression of the Saccharomyces cerevisiae Gal3p-Gal80p-Gal4p transcription switch: applications to galactose-regulated high-level production of proteins.
    Sil AK; Xin P; Hopper JE
    Protein Expr Purif; 2000 Mar; 18(2):202-12. PubMed ID: 10686151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LowTempGAL: a highly responsive low temperature-inducible GAL system in Saccharomyces cerevisiae.
    Lu Z; Shen Q; Bandari NC; Evans S; McDonnell L; Liu L; Jin W; Luna-Flores CH; Collier T; Talbo G; McCubbin T; Esquirol L; Myers C; Trau M; Dumsday G; Speight R; Howard CB; Vickers CE; Peng B
    Nucleic Acids Res; 2024 Jul; 52(12):7367-7383. PubMed ID: 38808673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid GAL gene switch of Saccharomyces cerevisiae depends on nuclear Gal3, not nucleocytoplasmic trafficking of Gal3 and Gal80.
    Egriboz O; Jiang F; Hopper JE
    Genetics; 2011 Nov; 189(3):825-36. PubMed ID: 21890741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-association of the Gal4 inhibitor protein Gal80 is impaired by Gal3: evidence for a new mechanism in the GAL gene switch.
    Egriboz O; Goswami S; Tao X; Dotts K; Schaeffer C; Pilauri V; Hopper JE
    Mol Cell Biol; 2013 Sep; 33(18):3667-74. PubMed ID: 23858060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascaded amplifying circuit enables sensitive detection of fungal pathogens.
    Fan C; He N; Yuan J
    Biosens Bioelectron; 2024 Apr; 250():116058. PubMed ID: 38281368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-engineering of CUP1 promoter and Cup2/Ace1 transactivator to convert Saccharomyces cerevisiae into a whole-cell eukaryotic biosensor capable of detecting 10 nM of bioavailable copper.
    Žunar B; Mosrin C; Bénédetti H; Vallée B
    Biosens Bioelectron; 2022 Oct; 214():114502. PubMed ID: 35785751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mediator acts upstream of the transcriptional activator Gal4.
    Ang K; Ee G; Ang E; Koh E; Siew WL; Chan YM; Nur S; Tan YS; Lehming N
    PLoS Biol; 2012; 10(3):e1001290. PubMed ID: 22479149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GAL4 mutations that separate the transcriptional activation and GAL80-interactive functions of the yeast GAL4 protein.
    Salmeron JM; Leuther KK; Johnston SA
    Genetics; 1990 May; 125(1):21-7. PubMed ID: 2187743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetics of the yeast galactose genetic switch.
    Bhat PJ; Iyer RS
    J Biosci; 2009 Oct; 34(4):513-22. PubMed ID: 19920337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells.
    Vopálenská I; Váchová L; Palková Z
    Biosens Bioelectron; 2015 Oct; 72():160-7. PubMed ID: 25982723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering transcription factor-based biosensors for repressive regulation through transcriptional deactivation design in Saccharomyces cerevisiae.
    Qiu C; Chen X; Rexida R; Shen Y; Qi Q; Bao X; Hou J
    Microb Cell Fact; 2020 Jul; 19(1):146. PubMed ID: 32690010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon.
    Zenke FT; Zachariae W; Lunkes A; Breunig KD
    Mol Cell Biol; 1993 Dec; 13(12):7566-76. PubMed ID: 8246973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of positive and negative regulatory proteins in the galactose regulon of yeast.
    Johnston SA; Salmeron JM; Dincher SS
    Cell; 1987 Jul; 50(1):143-6. PubMed ID: 3297350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the design of an oxidative stress sensing biosensor in yeast.
    Dacquay LC; McMillen DR
    FEMS Yeast Res; 2021 May; 21(4):. PubMed ID: 33864457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic evidence for sites of interaction between the Gal3 and Gal80 proteins of the Saccharomyces cerevisiae GAL gene switch.
    Diep CQ; Tao X; Pilauri V; Losiewicz M; Blank TE; Hopper JE
    Genetics; 2008 Feb; 178(2):725-36. PubMed ID: 18245852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene activation by dissociation of an inhibitor from a transcriptional activation domain.
    Jiang F; Frey BR; Evans ML; Friel JC; Hopper JE
    Mol Cell Biol; 2009 Oct; 29(20):5604-10. PubMed ID: 19651897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon.
    Bhat PJ; Hopper JE
    Mol Cell Biol; 1992 Jun; 12(6):2701-7. PubMed ID: 1317007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gal80 dimerization and the yeast GAL gene switch.
    Pilauri V; Bewley M; Diep C; Hopper J
    Genetics; 2005 Apr; 169(4):1903-14. PubMed ID: 15695361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.