BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35829681)

  • 1. An
    Williams NB; Batool S; Zumrut HE; Patel R; Sosa G; Jamal M; Mallikaratchy P
    Biochemistry; 2022 Aug; 61(15):1600-1613. PubMed ID: 35829681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of Aptamers Against Cell Surface Markers Using Ligand-Guided Selection.
    Williams N; Patel R; Mallikaratchy P
    Methods Mol Biol; 2023; 2570():13-38. PubMed ID: 36156771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural optimization of an aptamer generated from Ligand-Guided Selection (LIGS) resulted in high affinity variant toward mIgM expressed on Burkitt's lymphoma cell lines.
    Zümrüt HE; Batool S; Van N; George S; Bhandari S; Mallikaratchy P
    Biochim Biophys Acta Gen Subj; 2017 Jul; 1861(7):1825-1832. PubMed ID: 28363693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-Guided Selection of Target-Specific Aptamers: A Screening Technology for Identifying Specific Aptamers Against Cell-Surface Proteins.
    Zumrut HE; Ara MN; Fraile M; Maio G; Mallikaratchy P
    Nucleic Acid Ther; 2016 Jun; 26(3):190-8. PubMed ID: 27148897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating Ligand-Receptor Interactions and In Vitro Evolution for Streamlined Discovery of Artificial Nucleic Acid Ligands.
    Zumrut HE; Batool S; Argyropoulos KV; Williams N; Azad R; Mallikaratchy PR
    Mol Ther Nucleic Acids; 2019 Sep; 17():150-163. PubMed ID: 31255977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimerization of an aptamer generated from Ligand-guided selection (LIGS) yields a high affinity scaffold against B-cells.
    Batool S; Argyropoulos KV; Azad R; Okeoma P; Zumrut H; Bhandari S; Dekhang R; Mallikaratchy PR
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):232-240. PubMed ID: 30342154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-guided selection of aptamers against T-cell Receptor-cluster of differentiation 3 (TCR-CD3) expressed on Jurkat.E6 cells.
    Zumrut HE; Ara MN; Maio GE; Van NA; Batool S; Mallikaratchy PR
    Anal Biochem; 2016 Nov; 512():1-7. PubMed ID: 27519622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-Guided Selection with Artificially Expanded Genetic Information Systems against TCR-CD3ε.
    Zumrut H; Yang Z; Williams N; Arizala J; Batool S; Benner SA; Mallikaratchy P
    Biochemistry; 2020 Feb; 59(4):552-562. PubMed ID: 31880917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand Guided Selection (LIGS) of Artificial Nucleic Acid Ligands against Cell Surface Targets.
    Zumrut HE; Mallikaratchy PR
    ACS Appl Bio Mater; 2020 May; 3():2545-2552. PubMed ID: 34013167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Capture-SELEX Strategy for Multiplexed Selection of RNA Aptamers Against Small Molecules.
    Lauridsen LH; Doessing HB; Long KS; Nielsen AT
    Methods Mol Biol; 2018; 1671():291-306. PubMed ID: 29170966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Advancements in complex target systematic evolution of ligands by exponential enrichment].
    Wu Z; Xue S; Yang Y
    Se Pu; 2018 Oct; 36(10):947-951. PubMed ID: 30378352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches.
    Oliveira R; Pinho E; Sousa AL; DeStefano JJ; Azevedo NF; Almeida C
    Trends Biotechnol; 2022 May; 40(5):549-563. PubMed ID: 34756455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Efficient screening for 8-oxoguanine DNA glycosylase binding aptamers via capillary electrophoresis].
    Han S; Zhao L; Yang G; Qu F
    Se Pu; 2021 Jul; 39(7):721-729. PubMed ID: 34227370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Cell-Specific Aptamers: Recent Advances and Insight into the Selection Procedures.
    Rahimizadeh K; AlShamaileh H; Fratini M; Chakravarthy M; Stephen M; Shigdar S; Veedu RN
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29186905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of Complex Target SELEX to Identify Aptamers against Mammalian Cell-Surface Antigens.
    Mallikaratchy P
    Molecules; 2017 Jan; 22(2):. PubMed ID: 28146093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition-Enhanced Ligand Selection to Identify DNA Aptamers.
    Tapp MJN; Slocik JM; Dennis PB; Naik RR; Milam VT
    ACS Comb Sci; 2018 Oct; 20(10):585-593. PubMed ID: 30189130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Exonucleases for Aptamer Characterization, Engineering, and Sensing.
    Alkhamis O; Canoura J; Ly PT; Xiao Y
    Acc Chem Res; 2023 Jul; 56(13):1731-1743. PubMed ID: 37314701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress of SELEX methods for screening nucleic acid aptamers.
    Zhu C; Feng Z; Qin H; Chen L; Yan M; Li L; Qu F
    Talanta; 2024 Jan; 266(Pt 1):124998. PubMed ID: 37527564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute quantification of cell-bound DNA aptamers during SELEX.
    Avci-Adali M; Wilhelm N; Perle N; Stoll H; Schlensak C; Wendel HP
    Nucleic Acid Ther; 2013 Apr; 23(2):125-30. PubMed ID: 23405949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.