BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35830231)

  • 1. Intracellular Absolute Quantification of Oligonucleotide Therapeutics by NanoSIMS.
    Becquart C; Stulz R; Thomen A; Dost M; Najafinobar N; Dahlén A; Andersson S; Ewing AG; Kurczy ME
    Anal Chem; 2022 Jul; 94(29):10549-10556. PubMed ID: 35830231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential Uptake of Antisense Oligonucleotides in Mouse Hepatocytes and Macrophages Revealed by Simultaneous Two-Photon Excited Fluorescence and Coherent Raman Imaging.
    Mukherjee P; Aksamitiene E; Alex A; Shi J; Bera K; Zhang C; Spillman DR; Marjanovic M; Fazio M; Seth PP; Frazier K; Hood SR; Boppart SA
    Nucleic Acid Ther; 2022 Jun; 32(3):163-176. PubMed ID: 34797690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of unlabeled bepirovirsen antisense oligonucleotide in murine tissues using in situ hybridization and CARS imaging.
    Spencer-Dene B; Mukherjee P; Alex A; Bera K; Tseng WJ; Shi J; Chaney EJ; Spillman DR; Marjanovic M; Miranda E; Boppart SA; Hood SR
    RNA; 2023 Oct; 29(10):1575-1590. PubMed ID: 37460153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution visualization and quantification of nucleic acid-based therapeutics in cells and tissues using Nanoscale secondary ion mass spectrometry (NanoSIMS).
    He C; Migawa MT; Chen K; Weston TA; Tanowitz M; Song W; Guagliardo P; Iyer KS; Bennett CF; Fong LG; Seth PP; Young SG; Jiang H
    Nucleic Acids Res; 2021 Jan; 49(1):1-14. PubMed ID: 33275144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes.
    Tanowitz M; Hettrick L; Revenko A; Kinberger GA; Prakash TP; Seth PP
    Nucleic Acids Res; 2017 Dec; 45(21):12388-12400. PubMed ID: 29069408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the effect of GalNAc and phosphorothioate backbone on binding of antisense oligonucleotides to the asialoglycoprotein receptor.
    Schmidt K; Prakash TP; Donner AJ; Kinberger GA; Gaus HJ; Low A; Østergaard ME; Bell M; Swayze EE; Seth PP
    Nucleic Acids Res; 2017 Mar; 45(5):2294-2306. PubMed ID: 28158620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice.
    Prakash TP; Graham MJ; Yu J; Carty R; Low A; Chappell A; Schmidt K; Zhao C; Aghajan M; Murray HF; Riney S; Booten SL; Murray SF; Gaus H; Crosby J; Lima WF; Guo S; Monia BP; Swayze EE; Seth PP
    Nucleic Acids Res; 2014 Jul; 42(13):8796-807. PubMed ID: 24992960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NanoSIMS Imaging Reveals the Impact of Ligand-ASO Conjugate Stability on ASO Subcellular Distribution.
    Kay E; Stulz R; Becquart C; Lovric J; Tängemo C; Thomen A; Baždarević D; Najafinobar N; Dahlén A; Pielach A; Fernandez-Rodriguez J; Strömberg R; Ämmälä C; Andersson S; Kurczy M
    Pharmaceutics; 2022 Feb; 14(2):. PubMed ID: 35214195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-Administration of an Excipient Oligonucleotide Helps Delineate Pathways of Productive and Nonproductive Uptake of Phosphorothioate Antisense Oligonucleotides in the Liver.
    Donner AJ; Wancewicz EV; Murray HM; Greenlee S; Post N; Bell M; Lima WF; Swayze EE; Seth PP
    Nucleic Acid Ther; 2017 Aug; 27(4):209-220. PubMed ID: 28448194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the effect of 2'-O-methyl, fluoro hexitol, bicyclo and Morpholino nucleic acid modifications on potency of GalNAc conjugated antisense oligonucleotides in mice.
    Prakash TP; Yu J; Kinberger GA; Low A; Jackson M; Rigo F; Swayze EE; Seth PP
    Bioorg Med Chem Lett; 2018 Dec; 28(23-24):3774-3779. PubMed ID: 30342955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single-cell map of antisense oligonucleotide activity in the brain.
    Mortberg MA; Gentile JE; Nadaf NM; Vanderburg C; Simmons S; Dubinsky D; Slamin A; Maldonado S; Petersen CL; Jones N; Kordasiewicz HB; Zhao HT; Vallabh SM; Minikel EV
    Nucleic Acids Res; 2023 Aug; 51(14):7109-7124. PubMed ID: 37188501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Potency of GalNAc-Conjugated Antisense Oligonucleotides in Hepatocellular Cancer Models.
    Kim Y; Jo M; Schmidt J; Luo X; Prakash TP; Zhou T; Klein S; Xiao X; Post N; Yin Z; MacLeod AR
    Mol Ther; 2019 Sep; 27(9):1547-1557. PubMed ID: 31303442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preclinical Evaluation of the Renal Toxicity of Oligonucleotide Therapeutics in Mice.
    Echevarría L; Goyenvalle A
    Methods Mol Biol; 2022; 2434():371-384. PubMed ID: 35213032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Annexin A2 facilitates endocytic trafficking of antisense oligonucleotides.
    Wang S; Sun H; Tanowitz M; Liang XH; Crooke ST
    Nucleic Acids Res; 2016 Sep; 44(15):7314-30. PubMed ID: 27378781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Characterization of Hepatic Distribution and mRNA Reduction of Antisense Oligonucleotides Conjugated with Triantennary N-Acetyl Galactosamine and Lipophilic Ligands Targeting Apolipoprotein B.
    Watanabe A; Nakajima M; Kasuya T; Onishi R; Kitade N; Mayumi K; Ikehara T; Kugimiya A
    J Pharmacol Exp Ther; 2016 May; 357(2):320-30. PubMed ID: 26907624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-sensitivity quantification of antisense oligonucleotides for pharmacokinetic characterization.
    Mahajan S; Zhao H; Kovacina K; Lachacz E; Hoxha S; Chan J; Liang M
    Bioanalysis; 2022 May; 14(9):603-613. PubMed ID: 35578971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages.
    Liang XH; Sun H; Shen W; Crooke ST
    Nucleic Acids Res; 2015 Mar; 43(5):2927-45. PubMed ID: 25712094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluorescent splice-switching mouse model enables high-throughput, sensitive quantification of antisense oligonucleotide delivery and activity.
    Byrnes AE; Roudnicky F; Gogineni A; Soung AL; Xiong M; Hayne M; Heaster-Ford T; Shatz-Binder W; Dominguez SL; Imperio J; Gierke S; Roberts J; Guo J; Ghosh S; Yu C; Roose-Girma M; Elstrott J; Easton A; Hoogenraad CC
    Cell Rep Methods; 2024 Jan; 4(1):100673. PubMed ID: 38171361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a specific intracellular localization of an antisense oligonucleotide in k562 cells.
    Vasconcelos MH; Maia LF; Sousa C; Beleza SS; Guimarães JE
    J Pharmacol Sci; 2005 Sep; 99(1):105-8. PubMed ID: 16141637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physiologically-based pharmacokinetic model to describe antisense oligonucleotide distribution after intrathecal administration.
    Monine M; Norris D; Wang Y; Nestorov I
    J Pharmacokinet Pharmacodyn; 2021 Oct; 48(5):639-654. PubMed ID: 33991294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.