These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35830412)

  • 1. MetaDrive: Composing Diverse Driving Scenarios for Generalizable Reinforcement Learning.
    Li Q; Peng Z; Feng L; Zhang Q; Xue Z; Zhou B
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3461-3475. PubMed ID: 35830412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Supervised Discovering of Interpretable Features for Reinforcement Learning.
    Shi W; Huang G; Song S; Wang Z; Lin T; Wu C
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2712-2724. PubMed ID: 33186101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Deep Reinforcement Learning With Imitative Expert Priors for Autonomous Driving.
    Huang Z; Wu J; Lv C
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7391-7403. PubMed ID: 35081030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multi-Task Fusion Strategy-Based Decision-Making and Planning Method for Autonomous Driving Vehicles.
    Liu W; Xiang Z; Fang H; Huo K; Wang Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MO-MIX: Multi-Objective Multi-Agent Cooperative Decision-Making With Deep Reinforcement Learning.
    Hu T; Luo B; Yang C; Huang T
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12098-12112. PubMed ID: 37285257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformer-RL: A deep reinforcement learning library for conformer generation.
    Jiang R; Gogineni T; Kammeraad J; He Y; Tewari A; Zimmerman PM
    J Comput Chem; 2022 Oct; 43(27):1880-1886. PubMed ID: 36000759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STACoRe: Spatio-temporal and action-based contrastive representations for reinforcement learning in Atari.
    Lee YJ; Kim J; Kwak M; Park YJ; Kim SB
    Neural Netw; 2023 Mar; 160():1-11. PubMed ID: 36587439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming Challenges of Applying Reinforcement Learning for Intelligent Vehicle Control.
    Pina R; Tibebu H; Hook J; De Silva V; Kondoz A
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When to Switch: Planning and Learning for Partially Observable Multi-Agent Pathfinding.
    Skrynnik A; Andreychuk A; Yakovlev K; Panov AI
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37651484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Agent Reinforcement Learning for Traffic Flow Management of Autonomous Vehicles.
    Mushtaq A; Haq IU; Sarwar MA; Khan A; Khalil W; Mughal MA
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fear-Neuro-Inspired Reinforcement Learning for Safe Autonomous Driving.
    He X; Wu J; Huang Z; Hu Z; Wang J; Sangiovanni-Vincentelli A; Lv C
    IEEE Trans Pattern Anal Mach Intell; 2024 Jan; 46(1):267-279. PubMed ID: 37801378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Intelligent Self-Driving Truck System for Highway Transportation.
    Wang D; Gao L; Lan Z; Li W; Ren J; Zhang J; Zhang P; Zhou P; Wang S; Pan J; Manocha D; Yang R
    Front Neurorobot; 2022; 16():843026. PubMed ID: 35645759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying Reinforcement-Learning Agent's Autonomy, Reliance on Memory and Internalisation of the Environment.
    Ingel A; Makkeh A; Corcoll O; Vicente R
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intelligent control of self-driving vehicles based on adaptive sampling supervised actor-critic and human driving experience.
    Zhang J; Ma N; Wu Z; Wang C; Yao Y
    Math Biosci Eng; 2024 May; 21(5):6077-6096. PubMed ID: 38872570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sample-efficient multi-agent reinforcement learning with masked reconstruction.
    Kim JI; Lee YJ; Heo J; Park J; Kim J; Lim SR; Jeong J; Kim SB
    PLoS One; 2023; 18(9):e0291545. PubMed ID: 37708154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas concentration mapping and source localization for environmental monitoring through unmanned aerial systems using model-free reinforcement learning agents.
    Husnain AU; Mokhtar N; Mohamed Shah NB; Dahari MB; Azmi AA; Iwahashi M
    PLoS One; 2024; 19(2):e0296969. PubMed ID: 38394180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous action deep reinforcement learning for propofol dosing during general anesthesia.
    Schamberg G; Badgeley M; Meschede-Krasa B; Kwon O; Brown EN
    Artif Intell Med; 2022 Jan; 123():102227. PubMed ID: 34998516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compositional RL Agents That Follow Language Commands in Temporal Logic.
    Kuo YL; Katz B; Barbu A
    Front Robot AI; 2021; 8():689550. PubMed ID: 34350213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curriculum-Based Asymmetric Multi-Task Reinforcement Learning.
    Huang H; Ye D; Shen L; Liu W
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7258-7269. PubMed ID: 36417748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.