BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35830456)

  • 1. Machine learning-based estimation of riverine nutrient concentrations and associated uncertainties caused by sampling frequencies.
    Chen S; Zhang Z; Lin J; Huang J
    PLoS One; 2022; 17(7):e0271458. PubMed ID: 35830456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.
    Chen D; Lu J; Wang H; Shen Y; Kimberley MO
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):312-20. PubMed ID: 19795144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting in-stream water quality constituents at the watershed scale using machine learning.
    Adedeji IC; Ahmadisharaf E; Sun Y
    J Contam Hydrol; 2022 Dec; 251():104078. PubMed ID: 36206579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the impact of watershed characteristics and management on nutrient concentrations in tropical rivers using a machine learning method.
    Kikuchi T; Anzai T; Ouchi T; Okamoto K; Terajima Y
    Environ Pollut; 2023 Jan; 316(Pt 1):120599. PubMed ID: 36343855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning predictions of chlorophyll-a in the Han river basin, Korea.
    Kim KM; Ahn JH
    J Environ Manage; 2022 Sep; 318():115636. PubMed ID: 35777152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of three prevalent global riverine nutrient transport models.
    Jiao X; Zhou J; Hu M; Wang M; Wu H; Wu K; Chen D
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):122875-122885. PubMed ID: 37979117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of nitrogen and phosphorus concentrations from water quality surrogates using machine learning in the Tri An Reservoir, Vietnam.
    Ha NT; Nguyen HQ; Truong NCQ; Le TL; Thai VN; Pham TL
    Environ Monit Assess; 2020 Nov; 192(12):789. PubMed ID: 33241485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on water quality parameters estimation for urban rivers based on ground hyperspectral remote sensing technology.
    Hou Y; Zhang A; Lv R; Zhao S; Ma J; Zhang H; Li Z
    Environ Sci Pollut Res Int; 2022 Sep; 29(42):63640-63654. PubMed ID: 35460477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of sampling frequency and load calculation methods on quantification of annual river nutrient and suspended solids loads.
    Elwan A; Singh R; Patterson M; Roygard J; Horne D; Clothier B; Jones G
    Environ Monit Assess; 2018 Jan; 190(2):78. PubMed ID: 29327177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water quality index modeling using random forest and improved SMO algorithm for support vector machine in Saf-Saf river basin.
    Sakaa B; Elbeltagi A; Boudibi S; Chaffaï H; Islam ARMT; Kulimushi LC; Choudhari P; Hani A; Brouziyne Y; Wong YJ
    Environ Sci Pollut Res Int; 2022 Jul; 29(32):48491-48508. PubMed ID: 35192167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional patterns and drivers of total nitrogen trends in the Chesapeake Bay watershed: Insights from machine learning approaches and management implications.
    Zhang Q; Bostic JT; Sabo RD
    Water Res; 2022 Jun; 218():118443. PubMed ID: 35461100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed.
    Anmala J; Turuganti V
    Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random forest-based modeling of stream nutrients at national level in a data-scarce region.
    Virro H; Kmoch A; Vainu M; Uuemaa E
    Sci Total Environ; 2022 Sep; 840():156613. PubMed ID: 35700783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel simulation of aqueous total nitrogen and phosphorus concentrations in Taihu Lake with machine learning.
    Lu H; Yang L; Fan Y; Qian X; Liu T
    Environ Res; 2022 Mar; 204(Pt B):111940. PubMed ID: 34599896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?
    Liu M; Lu J
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):11036-53. PubMed ID: 24894753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006-2012).
    Tong Y; Zhao Y; Zhen G; Chi J; Liu X; Lu Y; Wang X; Yao R; Chen J; Zhang W
    Sci Rep; 2015 Nov; 5():16678. PubMed ID: 26582206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of watershed nutrient export affected by extreme events and the corresponding sampling frequency.
    Li W; Lei Q; Yen H; Zhai L; Hu W; Li Y; Wang H; Ren T; Liu H
    J Environ Manage; 2019 Nov; 250():109477. PubMed ID: 31479934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods.
    Najafzadeh M; Ghaemi A
    Environ Monit Assess; 2019 May; 191(6):380. PubMed ID: 31104155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid decision tree-based machine learning models for short-term water quality prediction.
    Lu H; Ma X
    Chemosphere; 2020 Jun; 249():126169. PubMed ID: 32078849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural background concentrations of nutrients in streams and rivers of the conterminous United States.
    Smith RA; Alexander RB; Schwarz GE
    Environ Sci Technol; 2003 Jul; 37(14):3039-47. PubMed ID: 12901648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.