BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35830538)

  • 1. Flexible customization of the self-assembling abilities of short elastin-like peptide Fn analogs by substituting N-terminal amino acids.
    Suyama K; Shimizu M; Maeda I; Nose T
    Biopolymers; 2022 Oct; 113(10):e23521. PubMed ID: 35830538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Aggregate Formation Through Aromatic Compound Adsorption in Elastin-like Peptide (FPGVG)
    Suyama K; Murashima M; Maeda I; Nose T
    Biomacromolecules; 2023 Nov; 24(11):5265-5276. PubMed ID: 37865930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues.
    Taniguchi S; Watanabe N; Nose T; Maeda I
    J Pept Sci; 2016 Jan; 22(1):36-42. PubMed ID: 26662843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple Regulation of the Self-Assembling Ability by Multimerization of Elastin-Derived Peptide (FPGVG)
    Suyama K; Mawatari M; Tatsubo D; Maeda I; Nose T
    ACS Omega; 2021 Mar; 6(8):5705-5716. PubMed ID: 33681610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the efficient preparation method for thermoresponsive elastin-like peptides using liquid-phase synthesis combined with fragment condensation strategy.
    Yoshida K; Suyama K; Matsushita S; Maeda I; Nose T
    J Pept Sci; 2023 Dec; 29(12):e3528. PubMed ID: 37340996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Phenylalanine-Containing Elastin-Derived Peptides Exhibiting Highly Potent Self-Assembling Capability.
    Maeda I; Taniguchi S; Watanabe N; Inoue A; Yamasaki Y; Nose T
    Protein Pept Lett; 2015; 22(10):934-9. PubMed ID: 26310504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Branched short elastin-like peptides with temperature responsiveness obtained by EDTA-mediated multimerization.
    Tanaka N; Suyama K; Tomohara K; Maeda I; Nose T
    J Pept Sci; 2023 Feb; 29(2):e3449. PubMed ID: 36038531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Self-Aggregation Properties of Linear Elastin-Derived Short Peptides by Simple Cyclization: Strong Self-Aggregation Properties of Cyclo[FPGVG]
    Suyama K; Tatsubo D; Iwasaki W; Miyazaki M; Kiyota Y; Takahashi I; Maeda I; Nose T
    Biomacromolecules; 2018 Aug; 19(8):3201-3211. PubMed ID: 29932654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stepwise Mechanism of Temperature-Dependent Coacervation of the Elastin-like Peptide Analogue Dimer, (C(WPGVG)
    Tatsubo D; Suyama K; Miyazaki M; Maeda I; Nose T
    Biochemistry; 2018 Mar; 57(10):1582-1590. PubMed ID: 29388768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the Sequence Dependency of Self-Assembly of Elastin-Like Peptides Using Short Peptide Analogues with Shuffled Repetitive Sequences.
    Tatsubo D; Suyama K; Sakamoto N; Tomohara K; Taniguchi S; Maeda I; Nose T
    Biochemistry; 2023 Sep; 62(17):2559-2570. PubMed ID: 37540116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of truncated elastin-like peptide analogues with improved temperature-response and self-assembling properties.
    Sumiyoshi S; Suyama K; Tanaka N; Andoh T; Nagata A; Tomohara K; Taniguchi S; Maeda I; Nose T
    Sci Rep; 2022 Nov; 12(1):19414. PubMed ID: 36371418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Peptide Sequence on the LCST-Like Transition of Elastin-Like Peptides and Elastin-Like Peptide-Collagen-Like Peptide Conjugates: Simulations and Experiments.
    Prhashanna A; Taylor PA; Qin J; Kiick KL; Jayaraman A
    Biomacromolecules; 2019 Mar; 20(3):1178-1189. PubMed ID: 30715857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimerization effects on coacervation property of an elastin-derived synthetic peptide (FPGVG)5.
    Suyama K; Taniguchi S; Tatsubo D; Maeda I; Nose T
    J Pept Sci; 2016 Apr; 22(4):236-43. PubMed ID: 27028208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-scale characterization of thermoresponsive dendritic elastin-like peptides.
    Zhou M; Shmidov Y; Matson JB; Bitton R
    Colloids Surf B Biointerfaces; 2017 May; 153():141-151. PubMed ID: 28236790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural requirements essential for elastin coacervation: favorable spatial arrangements of valine ridges on the three-dimensional structure of elastin-derived polypeptide (VPGVG)n.
    Maeda I; Fukumoto Y; Nose T; Shimohigashi Y; Nezu T; Terada Y; Kodama H; Kaibara K; Okamoto K
    J Pept Sci; 2011 Nov; 17(11):735-43. PubMed ID: 21919131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical synthesis and characterization of elastin-like polypeptides (ELPs) with variable guest residues.
    Aladini F; Araman C; Becker CF
    J Pept Sci; 2016 May; 22(5):334-42. PubMed ID: 27005861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembly of Stable Nanoscale Platelets from Designed Elastin-like Peptide-Collagen-like Peptide Bioconjugates.
    Qin J; Luo T; Kiick KL
    Biomacromolecules; 2019 Apr; 20(4):1514-1521. PubMed ID: 30789709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembly of Short Elastin-like Amphiphilic Peptides: Effects of Temperature, Molecular Hydrophobicity and Charge Distribution.
    Cao M; Shen Y; Wang Y; Wang X; Li D
    Molecules; 2019 Jan; 24(1):. PubMed ID: 30625991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of supplementing specific amino acids on the expression of elastin-like polypeptides (ELPs).
    Chu HS; Park JE; Kim DM; Kim BG; Won JI
    Protein Expr Purif; 2010 Dec; 74(2):298-303. PubMed ID: 20667475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly/disassembly hysteresis of nanoparticles composed of marginally soluble, short elastin-like polypeptides.
    Bahniuk MS; Alshememry AK; Elgersma SV; Unsworth LD
    J Nanobiotechnology; 2018 Feb; 16(1):15. PubMed ID: 29454362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.