BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35830778)

  • 1. Discovery of CN0 as a novel proteolysis-targeting chimera (PROTAC) degrader of PARP1 that can activate the cGAS/STING immunity pathway combined with daunorubicin.
    Lin S; Tu G; Yu Z; Jiang Q; Zhang L; Liu J; Liu Q; Huang X; Xu J; Lin Y; Liu Y; Wu L
    Bioorg Med Chem; 2022 Sep; 70():116912. PubMed ID: 35830778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of PARP1 Dampens Pseudorabies Virus Infection through DNA Damage-Induced Antiviral Innate Immunity.
    Li GL; Ding GX; Zeng L; Ming SL; Fu PF; Wang Q; Yang GY; Wang J; Chu BB
    J Virol; 2021 Jul; 95(16):e0076021. PubMed ID: 34037418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A PARP1 PROTAC as a novel strategy against PARP inhibitor resistance via promotion of ferroptosis in p53-positive breast cancer.
    Li G; Lin SS; Yu ZL; Wu XH; Liu JW; Tu GH; Liu QY; Tang YL; Jiang QN; Xu JH; Huang QL; Wu LX
    Biochem Pharmacol; 2022 Dec; 206():115329. PubMed ID: 36309080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SHP2-Mediated Inhibition of DNA Repair Contributes to cGAS-STING Activation and Chemotherapeutic Sensitivity in Colon Cancer.
    Wei B; Xu L; Guo W; Wang Y; Wu J; Li X; Cai X; Hu J; Wang M; Xu Q; Liu W; Gu Y
    Cancer Res; 2021 Jun; 81(12):3215-3228. PubMed ID: 33820798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of SK-575 as a Highly Potent and Efficacious Proteolysis-Targeting Chimera Degrader of PARP1 for Treating Cancers.
    Cao C; Yang J; Chen Y; Zhou P; Wang Y; Du W; Zhao L; Chen Y
    J Med Chem; 2020 Oct; 63(19):11012-11033. PubMed ID: 32924477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis.
    Liu H; Zhang H; Wu X; Ma D; Wu J; Wang L; Jiang Y; Fei Y; Zhu C; Tan R; Jungblut P; Pei G; Dorhoi A; Yan Q; Zhang F; Zheng R; Liu S; Liang H; Liu Z; Yang H; Chen J; Wang P; Tang T; Peng W; Hu Z; Xu Z; Huang X; Wang J; Li H; Zhou Y; Liu F; Yan D; Kaufmann SHE; Chen C; Mao Z; Ge B
    Nature; 2018 Nov; 563(7729):131-136. PubMed ID: 30356214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoplasmic PARP1 links the genome instability to the inhibition of antiviral immunity through PARylating cGAS.
    Wang F; Zhao M; Chang B; Zhou Y; Wu X; Ma M; Liu S; Cao Y; Zheng M; Dang Y; Xu J; Chen L; Liu T; Tang F; Ren Y; Xu Z; Mao Z; Huang K; Luo M; Li J; Liu H; Ge B
    Mol Cell; 2022 Jun; 82(11):2032-2049.e7. PubMed ID: 35460603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PARP1 inhibitors trigger innate immunity via PARP1 trapping-induced DNA damage response.
    Kim C; Wang XD; Yu Y
    Elife; 2020 Aug; 9():. PubMed ID: 32844745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cGAS-STING Pathway: Novel Perspectives in Liver Diseases.
    Xu D; Tian Y; Xia Q; Ke B
    Front Immunol; 2021; 12():682736. PubMed ID: 33995425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and biological evaluation of a tumor-selective degrader of PARP1.
    Pu C; Wang S; Luo D; Liu Y; Ma X; Zhang H; Yu S; Lan S; Huang Q; Deng R; He X; Li R
    Bioorg Med Chem; 2022 Sep; 69():116908. PubMed ID: 35780655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel CRBN-Recruiting Proteolysis-Targeting Chimeras as Degraders of Stimulator of Interferon Genes with In Vivo Anti-Inflammatory Efficacy.
    Liu J; Yuan L; Ruan Y; Deng B; Yang Z; Ren Y; Li L; Liu T; Zhao H; Mai R; Chen J
    J Med Chem; 2022 May; 65(9):6593-6611. PubMed ID: 35452223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cGAS-STING signaling pathway in gastrointestinal inflammatory disease and cancers.
    Ke X; Hu T; Jiang M
    FASEB J; 2022 Jan; 36(1):e22029. PubMed ID: 34907606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the cGAS-STING pathway in cancer development and oncotherapeutic approaches.
    Khoo LT; Chen LY
    EMBO Rep; 2018 Dec; 19(12):. PubMed ID: 30446584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of a potent and selective PARP1 degrader promoting cell cycle arrest via intercepting CDC25C-CDK1 axis for treating triple-negative breast cancer.
    Wu Y; Wu M; Zheng X; Yu H; Mao X; Jin Y; Wang Y; Pang A; Zhang J; Zeng S; Xu T; Chen Y; Zhang B; Lin N; Dai H; Wang Y; Yao X; Dong X; Huang W; Che J
    Bioorg Chem; 2024 Jan; 142():106952. PubMed ID: 37952486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cGas-Sting Signaling Pathway Is Required for the Innate Immune Response Against Ectromelia Virus.
    Cheng WY; He XB; Jia HJ; Chen GH; Jin QW; Long ZL; Jing ZZ
    Front Immunol; 2018; 9():1297. PubMed ID: 29963044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved strategies for pathogen evasion of cGAS-STING immunity.
    Eaglesham JB; Kranzusch PJ
    Curr Opin Immunol; 2020 Oct; 66():27-34. PubMed ID: 32339908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cGAS-STING pathway: The role of self-DNA sensing in inflammatory lung disease.
    Ma R; Ortiz Serrano TP; Davis J; Prigge AD; Ridge KM
    FASEB J; 2020 Oct; 34(10):13156-13170. PubMed ID: 32860267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cGAS-STING Pathway in Bacterial Infection and Bacterial Immunity.
    Liu N; Pang X; Zhang H; Ji P
    Front Immunol; 2021; 12():814709. PubMed ID: 35095914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salmonella Induces the cGAS-STING-Dependent Type I Interferon Response in Murine Macrophages by Triggering mtDNA Release.
    Xu L; Li M; Yang Y; Zhang C; Xie Z; Tang J; Shi Z; Chen S; Li G; Gu Y; Wang X; Zhang F; Wang Y; Shen X
    mBio; 2022 Jun; 13(3):e0363221. PubMed ID: 35604097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiotherapy and cGAS/STING signaling: Impact on MDSCs in the tumor microenvironment.
    Kho VM; Mekers VE; Span PN; Bussink J; Adema GJ
    Cell Immunol; 2021 Apr; 362():104298. PubMed ID: 33592541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.