These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35830912)
1. Retention of phosphorus and fluorine in phosphogypsum for cemented paste backfill: Experimental and numerical simulation studies. Liu Y; Chen Q; Dalconi MC; Molinari S; Valentini L; Wang Y; Sun S; Wang P; Artioli G Environ Res; 2022 Nov; 214(Pt 1):113775. PubMed ID: 35830912 [TBL] [Abstract][Full Text] [Related]
2. Highly-efficient fluoride retention in on-site solidification/stabilization of phosphogypsum: Cemented paste backfill synergizes with poly-aluminum chloride activation. Chen Q; Zhang Q; Wang Y; Zhang Q; Liu Y Chemosphere; 2022 Dec; 309(Pt 2):136652. PubMed ID: 36216108 [TBL] [Abstract][Full Text] [Related]
3. Enhanced solidification/stabilization (S/S) of fluoride in smelting solid waste-based phosphogypsum cemented paste backfill utilizing biochar: Mechanisms and performance assessment. Wang D; Tao Y; Feng Y; Zhu D; Zhang Q; Chen Q J Environ Manage; 2024 Sep; 367():122088. PubMed ID: 39116765 [TBL] [Abstract][Full Text] [Related]
4. Fluorides immobilization through calcium aluminate cement-based backfill: Accessing the detailed leaching characterization under torrential rainfall. Chen Q; Wang P; Wang Y; Feng Y; Liu Y; Qi C; Liu L Environ Res; 2023 Dec; 238(Pt 2):117229. PubMed ID: 37778605 [TBL] [Abstract][Full Text] [Related]
5. In Situ Remediation of Phosphogypsum with Water-Washing Pre-Treatment Using Cemented Paste Backfill: Rheology Behavior and Damage Evolution. Liu Y; Chen Q; Wang Y; Zhang Q; Li H; Jiang C; Qi C Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832394 [TBL] [Abstract][Full Text] [Related]
6. Highly efficient recovery of phosphate and fluoride from phosphogypsum leachate: Selective precipitation and adsorption. Zhao M; Li X; Yu JX; Li F; Guo L; Song G; Xiao C; Zhou F; Chi R; Feng G J Environ Manage; 2024 Sep; 367():122064. PubMed ID: 39098065 [TBL] [Abstract][Full Text] [Related]
7. The Phosphorus Transport in Groundwater from Phosphogypsum-Based Cemented Paste Backfill in a Phosphate Mine: A Numerical Study. Chen Q; Zhou H; Liu Y; Wang D Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429675 [TBL] [Abstract][Full Text] [Related]
8. In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment. Chen Q; Sun S; Wang Y; Zhang Q; Zhu L; Liu Y Chemosphere; 2023 Feb; 313():137412. PubMed ID: 36455381 [TBL] [Abstract][Full Text] [Related]
9. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill. Chen Q; Zhang Q; Fourie A; Xin C J Environ Manage; 2017 Oct; 201():19-27. PubMed ID: 28633078 [TBL] [Abstract][Full Text] [Related]
10. Determination of utilization strategies for hemihydrate phosphogypsum in cemented paste backfill: Used as cementitious material or aggregate. Jiang G; Wu A; Wang Y; Wang Y; Li J J Environ Manage; 2022 Apr; 308():114687. PubMed ID: 35144062 [TBL] [Abstract][Full Text] [Related]
11. Effect of phosphorus on the properties of phosphogypsum-based cemented backfill. Zhou S; Li X; Zhou Y; Min C; Shi Y J Hazard Mater; 2020 Nov; 399():122993. PubMed ID: 32521317 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of metals in backfill of a phosphate mine of guiyang, China using a three-step sequential extraction technique. Shi Y; Gan L; Li X; He S; Sun C; Gao L Chemosphere; 2018 Feb; 192():354-361. PubMed ID: 29121565 [TBL] [Abstract][Full Text] [Related]
13. Study on the occurrence state of main components of phosphogypsum dihydrate and its impurity distribution. Dong W; Sun N; Deng X; Chen Z; Zhang Y; Chi R; Hu L RSC Adv; 2024 Jul; 14(31):22280-22291. PubMed ID: 39010924 [TBL] [Abstract][Full Text] [Related]
14. Transfer characteristic of fluorine from atmospheric dry deposition, fertilizers, pesticides, and phosphogypsum into soil. Cui SF; Fu YZ; Zhou BQ; Li JX; He WY; Yu YQ; Yang JY Chemosphere; 2021 Sep; 278():130432. PubMed ID: 33839389 [TBL] [Abstract][Full Text] [Related]
15. Leaching toxicity and deformation failure characteristics of phosphogypsum-based cemented paste backfill under chemical solution erosion. Li Y; Yao N; Ye Y; Wu M; Chen G; Guan W Environ Sci Pollut Res Int; 2023 Aug; 30(40):92451-92468. PubMed ID: 37491492 [TBL] [Abstract][Full Text] [Related]
16. Existing form and distribution of fluorine and phosphorus in phosphate rock acid-insoluble residue. Li R; He W; Duan J; Feng S; Zhu Z; Zhang Y Environ Sci Pollut Res Int; 2022 Jan; 29(5):7758-7771. PubMed ID: 34476715 [TBL] [Abstract][Full Text] [Related]
17. Fluoride immobilization and release in cemented PG backfill and its influence on the environment. Li X; Zhou Y; Shi Y; Zhu Q Sci Total Environ; 2023 Apr; 869():161548. PubMed ID: 36640883 [TBL] [Abstract][Full Text] [Related]
18. Spatial distribution and leaching behavior of pollutants from phosphogypsum stocked in a gypstack: Geochemical characterization and modeling. Bisone S; Gautier M; Chatain V; Blanc D J Environ Manage; 2017 May; 193():567-575. PubMed ID: 28242112 [TBL] [Abstract][Full Text] [Related]
19. A novel method for the stabilization of soluble contaminants in electrolytic manganese residue: Using low-cost phosphogypsum leachate and magnesia/calcium oxide. Chen H; Long Q; Zhang Y; Wang S; Deng F Ecotoxicol Environ Saf; 2020 May; 194():110384. PubMed ID: 32126412 [TBL] [Abstract][Full Text] [Related]
20. Environmental assessment of phosphogypsum: A comprehensive geochemical modeling and leaching behavior study. Akfas F; Elghali A; Toubri Y; Samrane K; Munoz M; Bodinier JL; Benzaazoua M J Environ Manage; 2024 May; 359():120929. PubMed ID: 38669878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]