These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 35831310)

  • 1. Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding.
    Conte M; Irani E; Chiariello AM; Abraham A; Bianco S; Esposito A; Nicodemi M
    Nat Commun; 2022 Jul; 13(1):4070. PubMed ID: 35831310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer physics indicates chromatin folding variability across single-cells results from state degeneracy in phase separation.
    Conte M; Fiorillo L; Bianco S; Chiariello AM; Esposito A; Nicodemi M
    Nat Commun; 2020 Jul; 11(1):3289. PubMed ID: 32620890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the Machinery behind Chromosome Folding by Polymer Physics Modeling.
    Conte M; Esposito A; Vercellone F; Abraham A; Bianco S
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physics-Based Polymer Models to Probe Chromosome Structure in Single Molecules.
    Conte M; Chiariello AM; Bianco S; Esposito A; Abraham A; Nicodemi M
    Methods Mol Biol; 2023; 2655():57-66. PubMed ID: 37212988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational approaches from polymer physics to investigate chromatin folding.
    Bianco S; Chiariello AM; Conte M; Esposito A; Fiorillo L; Musella F; Nicodemi M
    Curr Opin Cell Biol; 2020 Jun; 64():10-17. PubMed ID: 32045823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome organization via loop extrusion, insights from polymer physics models.
    Ghosh SK; Jost D
    Brief Funct Genomics; 2020 Mar; 19(2):119-127. PubMed ID: 31711163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin organization by an interplay of loop extrusion and compartmental segregation.
    Nuebler J; Fudenberg G; Imakaev M; Abdennur N; Mirny LA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6697-E6706. PubMed ID: 29967174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer Simulations of Heteromorphic Chromatin Predict the 3D Folding of Complex Genomic Loci.
    Buckle A; Brackley CA; Boyle S; Marenduzzo D; Gilbert N
    Mol Cell; 2018 Nov; 72(4):786-797.e11. PubMed ID: 30344096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the Hi-C, GAM and SPRITE methods using polymer models of chromatin.
    Fiorillo L; Musella F; Conte M; Kempfer R; Chiariello AM; Bianco S; Kukalev A; Irastorza-Azcarate I; Esposito A; Abraham A; Prisco A; Pombo A; Nicodemi M
    Nat Methods; 2021 May; 18(5):482-490. PubMed ID: 33963348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical mechanisms of chromatin spatial organization.
    Chiariello AM; Bianco S; Esposito A; Fiorillo L; Conte M; Irani E; Musella F; Abraham A; Prisco A; Nicodemi M
    FEBS J; 2022 Mar; 289(5):1180-1190. PubMed ID: 33583147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer models are a versatile tool to study chromatin 3D organization.
    Esposito A; Bianco S; Fiorillo L; Conte M; Abraham A; Musella F; Nicodemi M; Prisco A; Chiariello AM
    Biochem Soc Trans; 2021 Aug; 49(4):1675-1684. PubMed ID: 34282837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A polymer model explains the complexity of large-scale chromatin folding.
    Barbieri M; Fraser J; Lavitas LM; Chotalia M; Dostie J; Pombo A; Nicodemi M
    Nucleus; 2013; 4(4):267-73. PubMed ID: 23823730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer simulations guide the detection and quantification of chromatin loop extrusion by imaging.
    Sabaté T; Lelandais B; Bertrand E; Zimmer C
    Nucleic Acids Res; 2023 Apr; 51(6):2614-2632. PubMed ID: 36840746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models of polymer physics for the architecture of the cell nucleus.
    Esposito A; Annunziatella C; Bianco S; Chiariello AM; Fiorillo L; Nicodemi M
    Wiley Interdiscip Rev Syst Biol Med; 2019 Jul; 11(4):e1444. PubMed ID: 30566285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture.
    Gassler J; Brandão HB; Imakaev M; Flyamer IM; Ladstätter S; Bickmore WA; Peters JM; Mirny LA; Tachibana K
    EMBO J; 2017 Dec; 36(24):3600-3618. PubMed ID: 29217590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-scale phase separation by explosive percolation with single-chromatin loop resolution.
    Sengupta K; Denkiewicz M; Chiliński M; Szczepińska T; Mollah AF; Korsak S; D'Souza R; Ruan Y; Plewczynski D
    Comput Struct Biotechnol J; 2022; 20():3591-3603. PubMed ID: 35860407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Organization of Chromatin: Emergence of Chromatin Structure During Development.
    Ghosh RP; Meyer BJ
    Annu Rev Cell Dev Biol; 2021 Oct; 37():199-232. PubMed ID: 34228506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
    Sanborn AL; Rao SS; Huang SC; Durand NC; Huntley MH; Jewett AI; Bochkov ID; Chinnappan D; Cutkosky A; Li J; Geeting KP; Gnirke A; Melnikov A; McKenna D; Stamenova EK; Lander ES; Aiden EL
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6456-65. PubMed ID: 26499245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transferable model for chromosome architecture.
    Di Pierro M; Zhang B; Aiden EL; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12168-12173. PubMed ID: 27688758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.