These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35831505)

  • 41. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems.
    Wagner PJ; Kosnik MA; Lidgard S
    Science; 2006 Nov; 314(5803):1289-92. PubMed ID: 17124319
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record.
    Huntley JW; Kowalewski M
    Proc Natl Acad Sci U S A; 2007 Sep; 104(38):15006-10. PubMed ID: 17855566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Early high rates and disparity in the evolution of ichthyosaurs.
    Moon BC; Stubbs TL
    Commun Biol; 2020 Feb; 3(1):68. PubMed ID: 32054967
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Earth's interior dynamics drive marine fossil diversity cycles of tens of millions of years.
    Boulila S; Peters SE; Müller RD; Haq BU; Hara N
    Proc Natl Acad Sci U S A; 2023 Jul; 120(29):e2221149120. PubMed ID: 37428908
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The apparent exponential radiation of Phanerozoic land vertebrates is an artefact of spatial sampling biases.
    Close RA; Benson RBJ; Alroy J; Carrano MT; Cleary TJ; Dunne EM; Mannion PD; Uhen MD; Butler RJ
    Proc Biol Sci; 2020 Apr; 287(1924):20200372. PubMed ID: 32259471
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global diversity dynamics in the fossil record are regionally heterogeneous.
    Flannery-Sutherland JT; Silvestro D; Benton MJ
    Nat Commun; 2022 May; 13(1):2751. PubMed ID: 35585069
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends.
    Miller AI; Foote M
    Paleobiology; 1996; 22(2):304-9. PubMed ID: 11539204
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of geographic range on extinction risk during background and mass extinction.
    Payne JL; Finnegan S
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10506-11. PubMed ID: 17563357
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Niche conservatism and ecological change during the Late Devonian mass extinction.
    Brisson SK; Pier JQ; Beard JA; Fernandes AM; Bush AM
    Proc Biol Sci; 2023 Apr; 290(1996):20222524. PubMed ID: 37015271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Colonization of the ocean floor by jawless vertebrates across three mass extinctions.
    Brownstein CD; Near TJ
    BMC Ecol Evol; 2024 Jun; 24(1):79. PubMed ID: 38867201
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impacts of speciation and extinction measured by an evolutionary decay clock.
    Hoyal Cuthill JF; Guttenberg N; Budd GE
    Nature; 2020 Dec; 588(7839):636-641. PubMed ID: 33299185
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The late blooming amphipods: Global change promoted post-Jurassic ecological radiation despite Palaeozoic origin.
    Copilaş-Ciocianu D; Borko Š; Fišer C
    Mol Phylogenet Evol; 2020 Feb; 143():106664. PubMed ID: 31669816
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heterogeneous selectivity and morphological evolution of marine clades during the Permian-Triassic mass extinction.
    Liu X; Song H; Chu D; Dai X; Wang F; Silvestro D
    Nat Ecol Evol; 2024 Jul; 8(7):1248-1258. PubMed ID: 38862784
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phanerozoic trends in the global diversity of marine invertebrates.
    Alroy J; Aberhan M; Bottjer DJ; Foote M; Fürsich FT; Harries PJ; Hendy AJ; Holland SM; Ivany LC; Kiessling W; Kosnik MA; Marshall CR; McGowan AJ; Miller AI; Olszewski TD; Patzkowsky ME; Peters SE; Villier L; Wagner PJ; Bonuso N; Borkow PS; Brenneis B; Clapham ME; Fall LM; Ferguson CA; Hanson VL; Krug AZ; Layou KM; Leckey EH; Nürnberg S; Powers CM; Sessa JA; Simpson C; Tomasovych A; Visaggi CC
    Science; 2008 Jul; 321(5885):97-100. PubMed ID: 18599780
    [TBL] [Abstract][Full Text] [Related]  

  • 56. First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction.
    Thuy B; Kiel S; Dulai A; Gale AS; Kroh A; Lord AR; Numberger-Thuy LD; Stöhr S; Wisshak M
    Proc Biol Sci; 2014 Jul; 281(1786):. PubMed ID: 24850917
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction.
    Song H; Wignall PB; Dunhill AM
    Sci Adv; 2018 Oct; 4(10):eaat5091. PubMed ID: 30324133
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The biogeographical imprint of mass extinctions.
    Kocsis ÁT; Reddin CJ; Kiessling W
    Proc Biol Sci; 2018 May; 285(1878):. PubMed ID: 29720415
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth.
    Brown A; Thatje S
    Biol Rev Camb Philos Soc; 2014 May; 89(2):406-26. PubMed ID: 24118851
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thresholds of temperature change for mass extinctions.
    Song H; Kemp DB; Tian L; Chu D; Song H; Dai X
    Nat Commun; 2021 Aug; 12(1):4694. PubMed ID: 34349121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.