These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35831654)

  • 1. Co-pyrolysis of neem wood bark and low-density polyethylene: influence of plastic on pyrolysis product distribution and bio-oil characterization.
    Kaushik VS; Dhanalakshmi CS; Madhu P; Tamilselvam P
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88213-88223. PubMed ID: 35831654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis behaviour and synergistic effect in co-pyrolysis of wheat straw and polyethylene terephthalate: A study on product distribution and oil characterization.
    M AK; A P S; J S; C SD; P S; Hatamleh AA; Al-Dosary MA; Mani RR; Chung WJ; Chang SW; Ravindran B
    Heliyon; 2024 Sep; 10(17):e37255. PubMed ID: 39296210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass co-pyrolysis: Effects of blending three different biomasses on oil yield and quality.
    Hopa DY; Alagöz O; Yılmaz N; Dilek M; Arabacı G; Mutlu T
    Waste Manag Res; 2019 Sep; 37(9):925-933. PubMed ID: 31319779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of bio-oil production from microwave co-pyrolysis of food waste and low-density polyethylene with response surface methodology.
    Neha S; Remya N
    J Environ Manage; 2021 Nov; 297():113345. PubMed ID: 34329909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality.
    Fan L; Chen P; Zhang Y; Liu S; Liu Y; Wang Y; Dai L; Ruan R
    Bioresour Technol; 2017 Feb; 225():199-205. PubMed ID: 27894038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of peach endocarp and polyethylene residue by the co-pyrolysis process.
    Valadão LS; Dos Santos Duarte C; de Los Santos DG; Filho PJS
    Environ Sci Pollut Res Int; 2022 Feb; 29(7):10702-10716. PubMed ID: 34528192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-pyrolysis of biomass and plastic: Synergistic effects and estimation of elemental composition of pyrolysis oil by analytical pyrolysis-gas chromatography/mass spectrometry.
    Nardella F; Bellavia S; Mattonai M; Ribechini E
    Bioresour Technol; 2022 Jun; 354():127170. PubMed ID: 35436539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects.
    Tang Z; Chen W; Chen Y; Yang H; Chen H
    Bioresour Technol; 2019 Feb; 274():145-152. PubMed ID: 30502605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene.
    Bu Q; Chen K; Xie W; Liu Y; Cao M; Kong X; Chu Q; Mao H
    Bioresour Technol; 2019 Nov; 291():121860. PubMed ID: 31374414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow pyrolysis of wood barks from Pinus brutia Ten. and product compositions.
    Sensöz S
    Bioresour Technol; 2003 Sep; 89(3):307-11. PubMed ID: 12798122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast co-pyrolysis behaviors and synergistic effects of corn stover and polyethylene via rapid infrared heating.
    Dai C; Hu E; Yang Y; Li M; Li C; Zeng Y
    Waste Manag; 2023 Sep; 169():147-156. PubMed ID: 37442035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite.
    Hassan H; Lim JK; Hameed BH
    Bioresour Technol; 2019 Jul; 284():406-414. PubMed ID: 30965196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions.
    Park C; Lee N; Kim J; Lee J
    Environ Pollut; 2021 Feb; 270():116045. PubMed ID: 33257148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of hydrocarbons production through co-pyrolysis of acid-treated biomass and waste tire in a fixed bed reactor.
    Khan SR; Zeeshan M; Masood A
    Waste Manag; 2020 Apr; 106():21-31. PubMed ID: 32179418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-pyrolysis of different torrefied Chinese herb residues and low-density polyethylene: Kinetic and products distribution.
    Huang S; Qin J; Chen T; Yi C; Zhang S; Zhou Z; Zhou N
    Sci Total Environ; 2022 Jan; 802():149752. PubMed ID: 34454148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products.
    Varma AK; Thakur LS; Shankar R; Mondal P
    Waste Manag; 2019 Apr; 89():224-235. PubMed ID: 31079735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from co-pyrolysis of cellulose and low density polyethylene via microwave-assisted heating.
    Bu Q; Cao M; Wang M; Zhang X; Mao H
    Sci Total Environ; 2021 Feb; 754():142174. PubMed ID: 32916498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of bio-crude oil properties via co-pyrolysis of pine sawdust and waste polystyrene foam.
    Van Nguyen Q; Choi YS; Choi SK; Jeong YW; Kwon YS
    J Environ Manage; 2019 May; 237():24-29. PubMed ID: 30780052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-pyrolysis of furniture wood with mixed plastics and waste tyres: assessment of synergistic effect on biofuel yield and product characterization under different blend ratio.
    Kumar I; Tirlangi S; Kathiresan K; Sharma V; Madhu P; Sathish T; Ağbulut Ü; Murugan P
    Sci Rep; 2024 Oct; 14(1):24584. PubMed ID: 39426977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation.
    Suriapparao DV; Vinu R; Shukla A; Haldar S
    Bioresour Technol; 2020 Apr; 302():122775. PubMed ID: 31986334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.