These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 35831796)
1. Detection of cell markers from single cell RNA-seq with sc2marker. Li R; Banjanin B; Schneider RK; Costa IG BMC Bioinformatics; 2022 Jul; 23(1):276. PubMed ID: 35831796 [TBL] [Abstract][Full Text] [Related]
2. geneBasis: an iterative approach for unsupervised selection of targeted gene panels from scRNA-seq. Missarova A; Jain J; Butler A; Ghazanfar S; Stuart T; Brusko M; Wasserfall C; Nick H; Brusko T; Atkinson M; Satija R; Marioni JC Genome Biol; 2021 Dec; 22(1):333. PubMed ID: 34872616 [TBL] [Abstract][Full Text] [Related]
3. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies. Baran Y; Doğan B Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data. Huang Q; Liu Y; Du Y; Garmire LX Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):267-281. PubMed ID: 33359678 [TBL] [Abstract][Full Text] [Related]
5. scRNA-Explorer: An End-user Online Tool for Single Cell RNA-seq Data Analysis Featuring Gene Correlation and Data Filtering. Baltsavia I; Oulas A; Theodosiou T; Lavigne MD; Andreakos E; Mavrothalassitis G; Iliopoulos I J Mol Biol; 2024 Sep; 436(17):168654. PubMed ID: 39237193 [TBL] [Abstract][Full Text] [Related]
6. A comparison of marker gene selection methods for single-cell RNA sequencing data. Pullin JM; McCarthy DJ Genome Biol; 2024 Feb; 25(1):56. PubMed ID: 38409056 [TBL] [Abstract][Full Text] [Related]
7. MLSpatial: A machine-learning method to reconstruct the spatial distribution of cells from scRNA-seq by extracting spatial features. Zhu M; Li C; Lv K; Guo H; Hou R; Tian G; Yang J Comput Biol Med; 2023 Jun; 159():106873. PubMed ID: 37105115 [TBL] [Abstract][Full Text] [Related]
8. Protocol for Identification and Removal of Doublets with DoubletDecon. DePasquale EAK; Schnell D; Chetal K; Salomonis N STAR Protoc; 2020 Sep; 1(2):100085. PubMed ID: 33111118 [TBL] [Abstract][Full Text] [Related]
9. Identification of new marker genes from plant single-cell RNA-seq data using interpretable machine learning methods. Yan H; Lee J; Song Q; Li Q; Schiefelbein J; Zhao B; Li S New Phytol; 2022 May; 234(4):1507-1520. PubMed ID: 35211979 [TBL] [Abstract][Full Text] [Related]
10. LINEAGE: Label-free identification of endogenous informative single-cell mitochondrial RNA mutation for lineage analysis. Lin L; Zhang Y; Qian W; Liu Y; Zhang Y; Lin F; Liu C; Lu G; Sun D; Guo X; Song Y; Song J; Yang C; Li J Proc Natl Acad Sci U S A; 2022 Feb; 119(5):. PubMed ID: 35086932 [TBL] [Abstract][Full Text] [Related]
11. scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets. Liu H; Li H; Sharma A; Huang W; Pan D; Gu Y; Lin L; Sun X; Liu H Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37183449 [TBL] [Abstract][Full Text] [Related]
17. Improvements Achieved by Multiple Imputation for Single-Cell RNA-Seq Data in Clustering Analysis and Differential Expression Analysis. Zhu M; Lai Y J Comput Biol; 2022 Jul; 29(7):634-649. PubMed ID: 35575729 [TBL] [Abstract][Full Text] [Related]
18. Learning discriminative and structural samples for rare cell types with deep generative model. Wang H; Ma X Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35914950 [TBL] [Abstract][Full Text] [Related]
19. Inferring Novel Cells in Single-Cell RNA-Sequencing Data. Li Z; Yang P Methods Mol Biol; 2024; 2812():143-154. PubMed ID: 39068360 [TBL] [Abstract][Full Text] [Related]
20. Single-Cell RNA-Seq Technologies and Computational Analysis Tools: Application in Cancer Research. Song Q; Liu L Methods Mol Biol; 2022; 2413():245-255. PubMed ID: 35044670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]