BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 35832085)

  • 1. Internally inlaid SaCas9 base editors enable window specific base editing.
    Jiang L; Long J; Yang Y; Zhou L; Su J; Qin F; Tang W; Tao R; Chen Q; Yao S
    Theranostics; 2022; 12(10):4767-4778. PubMed ID: 35832085
    [No Abstract]   [Full Text] [Related]  

  • 2. Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing.
    Nguyen Tran MT; Mohd Khalid MKN; Wang Q; Walker JKR; Lidgerwood GE; Dilworth KL; Lisowski L; Pébay A; Hewitt AW
    Nat Commun; 2020 Sep; 11(1):4871. PubMed ID: 32978399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects.
    Heo YB; Hwang GH; Kang SW; Bae S; Woo HM
    Microbiol Spectr; 2022 Dec; 10(6):e0376022. PubMed ID: 36374037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors.
    Song M; Kim HK; Lee S; Kim Y; Seo SY; Park J; Choi JW; Jang H; Shin JH; Min S; Quan Z; Kim JH; Kang HC; Yoon S; Kim HH
    Nat Biotechnol; 2020 Sep; 38(9):1037-1043. PubMed ID: 32632303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-nucleotide editing: From principle, optimization to application.
    Tang J; Lee T; Sun T
    Hum Mutat; 2019 Dec; 40(12):2171-2183. PubMed ID: 31131955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. sgBE: a structure-guided design of sgRNA architecture specifies base editing window and enables simultaneous conversion of cytosine and adenosine.
    Wang Y; Zhou L; Tao R; Liu N; Long J; Qin F; Tang W; Yang Y; Chen Q; Yao S
    Genome Biol; 2020 Aug; 21(1):222. PubMed ID: 32859244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved plant cytosine base editors with high editing activity, purity, and specificity.
    Ren Q; Sretenovic S; Liu G; Zhong Z; Wang J; Huang L; Tang X; Guo Y; Liu L; Wu Y; Zhou J; Zhao Y; Yang H; He Y; Liu S; Yin D; Mayorga R; Zheng X; Zhang T; Qi Y; Zhang Y
    Plant Biotechnol J; 2021 Oct; 19(10):2052-2068. PubMed ID: 34042262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors.
    Doman JL; Raguram A; Newby GA; Liu DR
    Nat Biotechnol; 2020 May; 38(5):620-628. PubMed ID: 32042165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered domain-inlaid Nme2Cas9 adenine base editors with increased on-target DNA editing and targeting scope.
    Zhao D; Gao X; Zhou J; Li J; Qian Y; Wang D; Niu W; Zhang T; Hu M; Xiong H; Lai L; Li Z
    BMC Biol; 2023 Nov; 21(1):250. PubMed ID: 37946200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria.
    Li C; Wang L; Cseke LJ; Vasconcelos F; Huguet-Tapia JC; Gassmann W; Pauwels L; White FF; Dong H; Yang B
    Commun Biol; 2023 Jan; 6(1):56. PubMed ID: 36646768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Off-Target Editing by CRISPR-Guided DNA Base Editors.
    Park S; Beal PA
    Biochemistry; 2019 Sep; 58(36):3727-3734. PubMed ID: 31433621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors.
    Huang TP; Zhao KT; Miller SM; Gaudelli NM; Oakes BL; Fellmann C; Savage DF; Liu DR
    Nat Biotechnol; 2019 Jun; 37(6):626-631. PubMed ID: 31110355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
    Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK
    Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosine base editors (CBEs) for inducing targeted DNA base editing in Nicotiana benthamiana.
    Luo J; Abid M; Tu J; Cai X; Zhang Y; Gao P; Huang H
    BMC Plant Biol; 2023 Jun; 23(1):305. PubMed ID: 37286962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytosine base editing systems with minimized off-target effect and molecular size.
    Li A; Mitsunobu H; Yoshioka S; Suzuki T; Kondo A; Nishida K
    Nat Commun; 2022 Aug; 13(1):4531. PubMed ID: 35941130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TadA orthologs enable both cytosine and adenine editing of base editors.
    Zhang S; Yuan B; Cao J; Song L; Chen J; Qiu J; Qiu Z; Zhao XM; Chen J; Cheng TL
    Nat Commun; 2023 Jan; 14(1):414. PubMed ID: 36702837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR DNA base editors with reduced RNA off-target and self-editing activities.
    Grünewald J; Zhou R; Iyer S; Lareau CA; Garcia SP; Aryee MJ; Joung JK
    Nat Biotechnol; 2019 Sep; 37(9):1041-1048. PubMed ID: 31477922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precision genome engineering through adenine and cytosine base editing.
    Kim JS
    Nat Plants; 2018 Mar; 4(3):148-151. PubMed ID: 29483683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis.
    Zhou C; Sun Y; Yan R; Liu Y; Zuo E; Gu C; Han L; Wei Y; Hu X; Zeng R; Li Y; Zhou H; Guo F; Yang H
    Nature; 2019 Jul; 571(7764):275-278. PubMed ID: 31181567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants.
    Xiong X; Li Z; Liang J; Liu K; Li C; Li JF
    Nucleic Acids Res; 2022 Apr; 50(6):3565-3580. PubMed ID: 35286371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.