These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35832120)

  • 1. Optimization of Synthetic Vocal Fold Models for Glottal Closure.
    Taylor CJ; Thomson SL
    J Eng Sci Med Diagn Ther; 2022 Aug; 5(3):031106. PubMed ID: 35832120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A synthetic, self-oscillating vocal fold model platform for studying augmentation injection.
    Murray PR; Thomson SL; Smith ME
    J Voice; 2014 Mar; 28(2):133-43. PubMed ID: 24476985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-Dependent Pressure and Flow Behavior of a Self-oscillating Laryngeal Model With Ventricular Folds.
    Alipour F; Scherer RC
    J Voice; 2015 Nov; 29(6):649-59. PubMed ID: 25873541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibratory responses of synthetic, self-oscillating vocal fold models.
    Murray PR; Thomson SL
    J Acoust Soc Am; 2012 Nov; 132(5):3428-38. PubMed ID: 23145623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printed Synthetic Vocal Fold Models.
    Romero RGT; Colton MB; Thomson SL
    J Voice; 2021 Sep; 35(5):685-694. PubMed ID: 32312610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2014 Mar; 135(3):1480-90. PubMed ID: 24606284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of thyroplasty type I on vocal fold vibration.
    Omori K; Slavit DH; Kacker A; Blaugrund SM; Kojima H
    Laryngoscope; 2000 Jul; 110(7):1086-91. PubMed ID: 10892675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Modeling of Fluid-Structure-Acoustics Interaction during Voice Production.
    Jiang W; Zheng X; Xue Q
    Front Bioeng Biotechnol; 2017; 5():7. PubMed ID: 28243588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THE ROLE OF THE THYROARYTENOID MUSCLE IN REGULATING GLOTTAL AIRFLOW AND GLOTTAL CLOSURE IN AN IN VIVO CANINE LARYNX MODEL.
    Luegmair G; Chhetri DK; Zhang Z
    Proc Meet Acoust; 2014 Oct; 22():. PubMed ID: 34900082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models.
    Pickup BA; Thomson SL
    J Biomech; 2009 Oct; 42(14):2219-25. PubMed ID: 19664777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of geometric parameters influencing the flow-induced vibration of a two-layer self-oscillating computational vocal fold model.
    Pickup BA; Thomson SL
    J Acoust Soc Am; 2011 Apr; 129(4):2121-32. PubMed ID: 21476668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model.
    Drechsel JS; Thomson SL
    J Acoust Soc Am; 2008 Jun; 123(6):4434-45. PubMed ID: 18537394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of inferior surface angle on the self-oscillation of a computational vocal fold model.
    Smith SL; Thomson SL
    J Acoust Soc Am; 2012 May; 131(5):4062-75. PubMed ID: 22559379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian Inference of Vocal Fold Material Properties from Glottal Area Waveforms Using a 2D Finite Element Model.
    Hadwin PJ; Motie-Shirazi M; Erath BD; Peterson SD
    Appl Sci (Basel); 2019 Jul; 9(13):. PubMed ID: 34046213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.