BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35832626)

  • 1. Construction and contextualization approaches for protein-protein interaction networks.
    Badkas A; De Landtsheer S; Sauter T
    Comput Struct Biotechnol J; 2022; 20():3280-3290. PubMed ID: 35832626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusing gene expressions and transitive protein-protein interactions for inference of gene regulatory networks.
    Liu W; Rajapakse JC
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):37. PubMed ID: 30953534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of modules of wild type and mutant Huntingtin and TP53 protein interaction networks: implications in biological processes and functions.
    Basu M; Bhattacharyya NP; Mohanty PK
    PLoS One; 2013; 8(5):e64838. PubMed ID: 23741403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing Disease Similarity Networks Based on Disease Module Theory.
    Ni P; Wang J; Zhong P; Li Y; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):906-915. PubMed ID: 29993782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of spreader nodes in human-SARS-CoV protein-protein interaction network.
    Saha S; Chatterjee P; Nasipuri M; Basu S
    PeerJ; 2021; 9():e12117. PubMed ID: 34567845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Context-based retrieval of functional modules in protein-protein interaction networks.
    Dobay MP; Stertz S; Delorenzi M
    Brief Bioinform; 2018 Sep; 19(5):995-1007. PubMed ID: 28369159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.
    Le DH; Verbeke L; Son LH; Chu DT; Pham VH
    BMC Bioinformatics; 2017 Nov; 18(1):479. PubMed ID: 29137601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of Parkinson's disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes.
    George G; Valiya Parambath S; Lokappa SB; Varkey J
    Gene; 2019 May; 697():67-77. PubMed ID: 30776463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies.
    Bhattacharyya M; Chakrabarti S
    Malar J; 2015 Feb; 14():70. PubMed ID: 25879642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explore the potential molecular mechanism of polycystic ovarian syndrome by protein-protein interaction network analysis.
    Chen Q; Zheng B; Du S; Lin Y
    Taiwan J Obstet Gynecol; 2021 Sep; 60(5):807-815. PubMed ID: 34507653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding the shortest path with PesCa: a tool for network reconstruction.
    Scardoni G; Tosadori G; Pratap S; Spoto F; Laudanna C
    F1000Res; 2015; 4():484. PubMed ID: 27781081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins.
    Cho YR; Zhang A
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S3. PubMed ID: 20438650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity.
    Managbanag JR; Witten TM; Bonchev D; Fox LA; Tsuchiya M; Kennedy BK; Kaeberlein M
    PLoS One; 2008; 3(11):e3802. PubMed ID: 19030232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tools for protein-protein interaction network analysis in cancer research.
    Sanz-Pamplona R; Berenguer A; Sole X; Cordero D; Crous-Bou M; Serra-Musach J; Guinó E; Pujana MÁ; Moreno V
    Clin Transl Oncol; 2012 Jan; 14(1):3-14. PubMed ID: 22262713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seed selection strategy in global network alignment without destroying the entire structures of functional modules.
    Wang B; Gao L
    Proteome Sci; 2012 Jun; 10 Suppl 1(Suppl 1):S16. PubMed ID: 22759574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein complex prediction: A survey.
    Zahiri J; Emamjomeh A; Bagheri S; Ivazeh A; Mahdevar G; Sepasi Tehrani H; Mirzaie M; Fakheri BA; Mohammad-Noori M
    Genomics; 2020 Jan; 112(1):174-183. PubMed ID: 30660789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph-based information diffusion method for prioritizing functionally related genes in protein-protein interaction networks.
    Pham M; Lichtarge O
    Pac Symp Biocomput; 2020; 25():439-450. PubMed ID: 31797617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AligNet: alignment of protein-protein interaction networks.
    Alcalá A; Alberich R; Llabrés M; Rosselló F; Valiente G
    BMC Bioinformatics; 2020 Nov; 21(Suppl 6):265. PubMed ID: 33203353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LePrimAlign: local entropy-based alignment of PPI networks to predict conserved modules.
    Maskey S; Cho YR
    BMC Genomics; 2019 Dec; 20(Suppl 9):964. PubMed ID: 31874635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for identifying disease associated protein complexes based on functional similarity protein complex networks.
    Le DH
    Algorithms Mol Biol; 2015; 10():14. PubMed ID: 25969691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.