These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35832626)

  • 21. Interactogeneous: disease gene prioritization using heterogeneous networks and full topology scores.
    Gonçalves JP; Francisco AP; Moreau Y; Madeira SC
    PLoS One; 2012; 7(11):e49634. PubMed ID: 23185389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MONACO: accurate biological network alignment through optimal neighborhood matching between focal nodes.
    Woo HM; Yoon BJ
    Bioinformatics; 2021 Jun; 37(10):1401-1410. PubMed ID: 33165517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying complexes from protein interaction networks according to different types of neighborhood density.
    Fan JH; Chen J; Sze SH
    J Comput Biol; 2012 Dec; 19(12):1284-94. PubMed ID: 23210476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovering distinct functional modules of specific cancer types using protein-protein interaction networks.
    Shen R; Wang X; Guda C
    Biomed Res Int; 2015; 2015():146365. PubMed ID: 26495282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-scale top-down approach for modelling epileptic protein-protein interaction network analysis to identify driver nodes and pathways.
    Suresh NT; E R V; U K
    Comput Biol Chem; 2020 Oct; 88():107323. PubMed ID: 32653778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Going the distance for protein function prediction: a new distance metric for protein interaction networks.
    Cao M; Zhang H; Park J; Daniels NM; Crovella ME; Cowen LJ; Hescott B
    PLoS One; 2013; 8(10):e76339. PubMed ID: 24194834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate multiple network alignment through context-sensitive random walk.
    Jeong H; Yoon BJ
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S7. PubMed ID: 25707987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knowledge-Guided "Community Network" Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer.
    Wang F; Han S; Yang J; Yan W; Hu G
    Cells; 2021 Feb; 10(2):. PubMed ID: 33669233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of Transcriptomics for Predicting Protein Interaction Networks, Drug Targets and Drug Candidates.
    Kankanige D; Liyanage L; O'Connor MD
    Front Med Technol; 2022; 4():693148. PubMed ID: 35356062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying disease-specific genes based on their topological significance in protein networks.
    Dezso Z; Nikolsky Y; Nikolskaya T; Miller J; Cherba D; Webb C; Bugrim A
    BMC Syst Biol; 2009 Mar; 3():36. PubMed ID: 19309513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein function prediction from protein-protein interaction network using gene ontology based neighborhood analysis and physico-chemical features.
    Saha S; Prasad A; Chatterjee P; Basu S; Nasipuri M
    J Bioinform Comput Biol; 2018 Dec; 16(6):1850025. PubMed ID: 30400756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clustering algorithms for detecting functional modules in protein interaction networks.
    Gao L; Sun PG; Song J
    J Bioinform Comput Biol; 2009 Feb; 7(1):217-42. PubMed ID: 19226668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Drug-Side Effect Context-Sensitive Network approach for drug target prediction.
    Zhou M; Chen Y; Xu R
    Bioinformatics; 2019 Jun; 35(12):2100-2107. PubMed ID: 30428013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C; Theofilatos K; Pegkas A; Likothanassis S; Mavroudi S
    Artif Intell Med; 2016 Jul; 71():62-9. PubMed ID: 27506132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new multi-scale method to reveal hierarchical modular structures in biological networks.
    Jiao QJ; Huang Y; Shen HB
    Mol Biosyst; 2016 Nov; 12(12):3724-3733. PubMed ID: 27783080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detecting recurrent gene mutation in interaction network context using multi-scale graph diffusion.
    Babaei S; Hulsman M; Reinders M; de Ridder J
    BMC Bioinformatics; 2013 Jan; 14():29. PubMed ID: 23343428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global multiple protein-protein interaction network alignment by combining pairwise network alignments.
    Dohrmann J; Puchin J; Singh R
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S11. PubMed ID: 26423128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting node characteristics from molecular networks.
    Mostafavi S; Goldenberg A; Morris Q
    Methods Mol Biol; 2011; 781():399-414. PubMed ID: 21877293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histogram contextualization.
    Feng J; Ni B; Xu D; Yan S
    IEEE Trans Image Process; 2012 Feb; 21(2):778-88. PubMed ID: 21824847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.