BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 35833136)

  • 1. Thiol Modifications in the Extracellular Space-Key Proteins in Inflammation and Viral Infection.
    Brücksken KA; Loreto Palacio P; Hanschmann EM
    Front Immunol; 2022; 13():932525. PubMed ID: 35833136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-based posttranslational modifications in parasites.
    Jortzik E; Wang L; Becker K
    Antioxid Redox Signal; 2012 Aug; 17(4):657-73. PubMed ID: 22085115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiol switches in membrane proteins - Extracellular redox regulation in cell biology.
    Lorenzen I; Eble JA; Hanschmann EM
    Biol Chem; 2021 Feb; 402(3):253-269. PubMed ID: 33108336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases.
    Gorelenkova Miller O; Mieyal JJ
    Arch Toxicol; 2015 Sep; 89(9):1439-67. PubMed ID: 25827102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity.
    Hashemy SI; Johansson C; Berndt C; Lillig CH; Holmgren A
    J Biol Chem; 2007 May; 282(19):14428-36. PubMed ID: 17355958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
    Harris C; Shuster DZ; Roman Gomez R; Sant KE; Reed MS; Pohl J; Hansen JM
    Free Radic Biol Med; 2013 Oct; 63():325-37. PubMed ID: 23736079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass spectrometry-based direct detection of multiple types of protein thiol modifications in pancreatic beta cells under endoplasmic reticulum stress.
    Li X; Day NJ; Feng S; Gaffrey MJ; Lin TD; Paurus VL; Monroe ME; Moore RJ; Yang B; Xian M; Qian WJ
    Redox Biol; 2021 Oct; 46():102111. PubMed ID: 34425387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of cysteine thiol modifications based on protein microenvironments and local secondary structures.
    Bhatnagar A; Bandyopadhyay D
    Proteins; 2018 Feb; 86(2):192-209. PubMed ID: 29139156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Expanding Landscape of the Thiol Redox Proteome.
    Yang J; Carroll KS; Liebler DC
    Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The STIM-Orai Pathway: Regulation of STIM and Orai by Thiol Modifications.
    Niemeyer BA
    Adv Exp Med Biol; 2017; 993():99-116. PubMed ID: 28900911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-glutathionylation of ion channels: insights into the regulation of channel functions, thiol modification crosstalk, and mechanosensing.
    Yang Y; Jin X; Jiang C
    Antioxid Redox Signal; 2014 Feb; 20(6):937-51. PubMed ID: 23834398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome.
    Paulech J; Solis N; Edwards AV; Puckeridge M; White MY; Cordwell SJ
    Anal Chem; 2013 Apr; 85(7):3774-80. PubMed ID: 23438843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol-based redox switches and gene regulation.
    Antelmann H; Helmann JD
    Antioxid Redox Signal; 2011 Mar; 14(6):1049-63. PubMed ID: 20626317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay.
    Murray CI; Uhrigshardt H; O'Meally RN; Cole RN; Van Eyk JE
    Mol Cell Proteomics; 2012 Feb; 11(2):M111.013441. PubMed ID: 22126794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutaredoxins in thiol/disulfide exchange.
    Lillig CH; Berndt C
    Antioxid Redox Signal; 2013 May; 18(13):1654-65. PubMed ID: 23231445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Thiol Redox Signaling in Monocytes and Macrophages.
    Short JD; Downs K; Tavakoli S; Asmis R
    Antioxid Redox Signal; 2016 Nov; 25(15):816-835. PubMed ID: 27288099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein S-glutathionylation: from current basics to targeted modifications.
    Popov D
    Arch Physiol Biochem; 2014 Oct; 120(4):123-30. PubMed ID: 25112365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peri/Epicellular Thiol Oxidoreductases as Mediators of Extracellular Redox Signaling.
    Tanaka LY; Oliveira PVS; Laurindo FRM
    Antioxid Redox Signal; 2020 Aug; 33(4):280-307. PubMed ID: 31910038
    [No Abstract]   [Full Text] [Related]  

  • 19. Thiol-disulfide exchange in signaling: disulfide bonds as a switch.
    Messens J; Collet JF
    Antioxid Redox Signal; 2013 May; 18(13):1594-6. PubMed ID: 23330837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.