These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35833152)

  • 21. Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification.
    Wang J; Zhao G; Zhang Z; Xu X; He X
    Acta Biomater; 2016 Mar; 33():264-74. PubMed ID: 26802443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming.
    Ye Z; Tai Y; Han Z; Liu S; Etheridge ML; Pasek-Allen JL; Shastry C; Liu Y; Li Z; Chen C; Wang Z; Bischof JC; Nam J; Yin Y
    Nano Lett; 2024 Apr; 24(15):4588-4594. PubMed ID: 38587406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ice Control during Cryopreservation of Heart Valves and Maintenance of Post-Warming Cell Viability.
    Brockbank KGM; Bischof JC; Chen Z; Greene ED; Gao Z; Campbell LH
    Cells; 2022 Jun; 11(12):. PubMed ID: 35740986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new cryomacroscope device (Type III) for visualization of physical events in cryopreservation with applications to vitrification and synthetic ice modulators.
    Rabin Y; Taylor MJ; Feig JS; Baicu S; Chen Z
    Cryobiology; 2013 Dec; 67(3):264-73. PubMed ID: 23993920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Laser Gold Nanowarming: A Platform for Millimeter-Scale Cryopreservation.
    Khosla K; Zhan L; Bhati A; Carley-Clopton A; Hagedorn M; Bischof J
    Langmuir; 2019 Jun; 35(23):7364-7375. PubMed ID: 30299961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal analysis of marginal conditions to facilitate cryopreservation by vitrification using a semi-empirical approach.
    Joshi P; Rabin Y
    Cryobiology; 2019 Dec; 91():128-136. PubMed ID: 31526802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From Nanowarming to Thermoregulation: New Multiscale Applications of Bioheat Transfer.
    Bischof JC; Diller KR
    Annu Rev Biomed Eng; 2018 Jun; 20():301-327. PubMed ID: 29865870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures.
    Elliott GD; Wang S; Fuller BJ
    Cryobiology; 2017 Jun; 76():74-91. PubMed ID: 28428046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphonate coating of commercial iron oxide nanoparticles for nanowarming cryopreserved samples.
    Pasek-Allen JL; Wilharm RK; Gao Z; Pierre VC; Bischof JC
    J Mater Chem B; 2022 May; 10(19):3734-3746. PubMed ID: 35466332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microencapsulation and nanowarming enables vitrification cryopreservation of mouse preantral follicles.
    Tian C; Shen L; Gong C; Cao Y; Shi Q; Zhao G
    Nat Commun; 2022 Dec; 13(1):7515. PubMed ID: 36522314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation.
    Hou Y; Lu C; Dou M; Zhang C; Chang H; Liu J; Rao W
    Acta Biomater; 2020 Jan; 102():403-415. PubMed ID: 31734413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of three multi-cryoprotectant loading protocols for vitrification of porcine articular cartilage.
    Wu K; Shardt N; Laouar L; Chen Z; Prasad V; Elliott JAW; Jomha NM
    Cryobiology; 2020 Feb; 92():151-160. PubMed ID: 31917159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PERSPECTIVE: Temperature-dependent density and thermal expansion of cryoprotective cocktails.
    Solanki PK; Rabin Y
    Cryo Letters; 2022; 43(1):1-9. PubMed ID: 35315864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Review of Rewarming Methods for Cryopreservation.
    Pan J; Zeng Q; Peng K; Zhou Y; Shu Z
    Biopreserv Biobank; 2024 Aug; 22(4):304-311. PubMed ID: 37751240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving vitrification efficiency of human in vitro matured oocytes by the addition of LEA proteins.
    Li L; Bi X; Wu X; Chen Z; Cao Y; Zhao G
    Hum Reprod; 2024 Jun; 39(6):1275-1290. PubMed ID: 38592717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vitrification Ability of Combined and Single Cryoprotective Agents.
    Faltus M; Bilavcik A; Zamecnik J
    Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cryopreservation and Laser Nanowarming of Zebrafish Embryos Followed by Hatching and Spawning.
    Khosla K; Kangas J; Liu Y; Zhan L; Daly J; Hagedorn M; Bischof J
    Adv Biosyst; 2020 Nov; 4(11):e2000138. PubMed ID: 32996298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanowarming improves survival of vitrified ovarian tissue and follicular development in a sheep model.
    Karimi S; Tabatabaei SN; Novin MG; Kazemi M; Mofarahe ZS; Ebrahimzadeh-Bideskan A
    Heliyon; 2023 Aug; 9(8):e18828. PubMed ID: 37636467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isochoric vitrification: An experimental study to establish proof of concept.
    Zhang Y; Ukpai G; Grigoropoulos A; Powell-Palm MJ; Weegman BP; Taylor MJ; Rubinsky B
    Cryobiology; 2018 Aug; 83():48-55. PubMed ID: 29908947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal vitrification protocol for mouse ovarian tissue cryopreservation: effect of cryoprotective agents and in vitro culture on vitrified-warmed ovarian tissue survival.
    Youm HW; Lee JR; Lee J; Jee BC; Suh CS; Kim SH
    Hum Reprod; 2014 Apr; 29(4):720-30. PubMed ID: 24365801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.